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Abstract
More than 300 million utility poles shoulder the utility grid in the United States. How-

ever, the ineffectiveness of the current inspection process causes roughly a third of utility

poles removed from the service deemed suitable for reuse. Due to the utterly essential

role of the power infrastructure, budget shrinkage, and the structural degradation of the

modern distribution grid, this Ph.D. dissertation addresses the challenges by proposing a

physics-based signal analysis method with a jointly developed ultrasonic UB1000 system c©

to enhance the objectivity in ultrasonic-based nondestructive evaluation (NDE). The pro-

posed methodology has been deployed commercially in the field and featured in articles by

the Missouri Public Utility Alliance and the Western Cooperative Electric.

This dissertation proposes embedded waveguide as an ultrasonic radiation source. A

systematic analytical model is developed based on the classical elastodynamic formula-

tion to study the excitation and the propagation characteristics of the resulted elastic wave.

Based on the steady-state assumption with a set of half-space boundary and interface load-

ing conditions, the obtained closed-form displacement field yields the diffusive property

of the shell region propagation as a function of the Poisson’s ratio. The diffusive property

is discovered under the quasi-steady load condition, a reasonable model to describe the

behavior of a narrow-band ultrasonic transducer. The estimated diffusive propagation is

demonstrated through the numerical finite element method (FEM).

This study developed the first high-fidelity numerical model of a wooden pole cross-

sectional region. It is capable of modeling a porous orthotropic medium under the cylin-
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drical symmetry enabling high moisture content and/or incipient decay conditions to be

simulated. Using a transient imposed boundary condition, the model uncovers different

arrival wave modes resulted from propagating in various regions within the cross-section.

By dissecting the waveform and isolating the corresponding arrival wave, it allows a di-

rect examination of the wave energy content within the shell region, which is a critical

area in the cross-section that dictates the overall strength of a wooden pole. By modifying

the physical and the poroelastic properties of the medium to simulate the incipient decay

and high moisture content, this study discovers a correlation between the selected features

within the received waveform and the physical property of the medium (e.g., modulus of

elasticity and the moisture saturation levels).

The findings from both the numerical and analytical approaches motivate the proposed

physics-based signal analysis to extract both the temporal and spectral information at the

resonant frequency of the ultrasonic wave via the time and frequency (TF) transformation.

A comparative study using the numerical results was performed to examine the Short Time

Fourier Transformation (STFT) and Gabor Continuous wavelet transform (GCWT). Due

to its superior temporal and spectral resolution, the GCWT is selected to analyze signals

from different simulated conditions. The results produce a pronounced difference in the

selected features in all the different simulated cases, suggesting a viable analysis approach

for characterizing the medium.

Based on the proposed physics-based signal analysis approach, this work develops

and details a corresponding pole analysis algorithm. The experiments were carried out

with specimens of different known Groundline (GL) conditions (healthy, decay and high-

moisture) to examine the efficacy of the proposed waveguide design and the associated

analysis algorithm. The collected signals are fed through the GCWT analysis algorithm

to extracted the features sensitive to those conditions. The results suggest a high moisture

content pole would have a typical energy attenuation of around 35% compared to a healthy
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pole with low moisture content, while the time when the peak energy occurs is relatively

the same in both cases. In a decay wood specimen, the result suggests an 11% latency in

peak energy time-of-flight (TOF), 50% energy reduction and a 50% increase in diffusivity

by measuring the full width half maximum (FWHM) around the energy peak. A further

refinement of the analysis places the peak energy TOF and energy reduction levels as the

selected features on a feature space to assess fifteen poles with known categories. A clear

decision boundary is discovered prompting a future research opportunity of using linear

and/or non-linear classifiers to determine the wooden pole at the GL region.
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Chapter 1

Introduction

1.1 Purpose

The United States uses about 300 million wooden poles to support two of the most

critical infrastructures: power and communication distribution networks. Their structural

integrity poses a vital concern for the sustainability of the system. Its undeniable impor-

tance demands a rigorous life-cycle monitoring program to prevent unexpected structural

failure that could incur costly unplanned maintenance and repair work (Bodig et al., 1982).

In 2013, data collected by the Oregon State University suggested the average service life

of a wood pole is far beyond the initial estimate of 30 to 40 years due to the improvement

in the quality of wooden utility poles. Data even suggested that an average pole service life

could easily reach 80 years in many areas (Morrell, 2008) and (Datla and Pandey, 2006).

The current inspection process for determining a pole condition results in over a third of

removed poles are deemed to be in good structural condition for service, causing the util-

ity companies roughly 9 billions of dollars annually. This wasteful consequence suggests

inadequacies in the current inspection, and it presents the opportunity for an improved as-

sessment process with better accuracy and consistency.
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The traditional inspection technique relies primarily on drilling and resistance micro-

drilling (Bhuyan, 1998) and (Morrell et al., 1996). These processes drill into the structure

to extract the wood fibers. Although it is a direct method of assessing the internal condi-

tion, the removal of material can inadvertently damage the previously established internal

chemical and physical balances. This process is termed destructive evaluation. Investi-

gations into the use of non-destructive evaluation have piqued many interests in scientific

and engineering communities (Galligan, 1964). This study focuses on two immediate con-

cerns surrounding the wooden pole inspections that have not been thoroughly addressed:

A detailed exploration of the ultrasonic wave in the shell region using a novel embedded

waveguide method and the physics-based signal analysis technique. The following sections

will briefly introduce and discuss some of the unsolved issues related to each of the topics.

1.1.1 Shell Region Inspection

Traditional inspection relies heavily on human subjectivity to determine the condition

of poles. The traditional process prior to the introduction of nondestructive evaluation has

been described in detail by (Morrell, 2012). According to the Rural Utility Service Bulletin

1730B-121 from (Loan and Guarantee, 2006), the initial determination of the pole condi-

tion is based on the inspector’s personal experience. That includes listening to the sounds

and feel of the hammer striking a pole. This process is inevitably subjective, producing a

massive variation in terms of the determination of the condition. Due to the importance of

the shell region condition to the overall structural integrity of the pole, which will be fur-

ther discussed in Chapter 2.1, the technique of using a hammer is incapable of resolving the

physical condition of the shell region. An improved technique employs shell-thickness in-

dicator (often termed the shell rot gauge) (Morrell, 2012) to determine the surface hardness

of the pole. This process disturbs the existing environmental condition at the groundline
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region. To mitigate the risk of interrupting the delicate balance while reducing subjectivity,

the NDE has been gaining more and more traction in the industry.

Among them, ultrasonic NDE is deemed to be an effective and deployable technology

for the field(Goodman and Stewart, 1990). Henceforth, this research will focus on utilizing

ultrasonic NDE technology for wooden pole inspection. Pioneers in the ultrasonic elastic

inspection primarily focused on the analysis of initial arrival of the wave. By measuring

the time difference between the transmission and receiving sensors, the physical properties

such as the density and the modulus of elasticity can be inferred (Suzuki et al., 1990). How-

ever, this technique only evaluates the region of the shortest distance between the sensors,

and the subsequent responses (or arrivals) in the waveform was not thoroughly analyzed

and understood. In the early work, a lack of computational power limited the understand-

ing of the wave characteristics in the cross-sectional region to be confined to an analytical

model developed by (Payton, 2003). Later, a numerical model was developed by (Senalik

et al., 2010) and (Bulleit and Falk, 1985) employing the NDE to characterize the wooden

poles by assuming the homogeneous and isotropic medium. Despite the critical role of the

physical condition in the shell region, the excitation and propagation characteristics of this

region were not thoroughly investigated. The trajectory of elastic wave propagation and

how it is related to the complex mechanical properties were not fully explored.

Objectives Related to Shell Region Inspection

This research revisits the first principle of the elastic wave equation to derive the close-

form analytical expression of the Rayleigh wave propagation in the shell region. This work

systematically explores the embedded waveguide excitation mechanism through analytical

formation and numerical estimation. An optimal embedded waveguide design through

field experiments is used to verify the findings. The propagation model is assumed to be an

orthotropic porous medium based on the Biot’s model (Biot, 1956). The associated findings
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give a more qualitative and quantitative understanding of the propagation mechanism in

wood.

1.1.2 Subsurface Narrow-band Excitation

The ultrasonic signal analysis primarily focuses on broad-band excitation to generate a

broad spectral profile. The broad spectral graph produces a dispersive relation that charac-

terizes the physical condition. This is often referred to as the impulse response. While it

produces a huge amount of information regarding the physical condition, it is often difficult

to analyze. Advanced signal processing techniques such as the pattern classification and

support vector machine (SVM) were employed (Dackermann et al., 2014). Data-driven al-

gorithms require a large amount of data and reliable labeling techniques. In the utility pole

inspection industry, accurate labeling of the pole condition presents a challenge. There is

also an issue of emitting consistent ultrasonic wave as the emitting wave depends on the

interface condition. The uneven impact surfaces can affect the emission characteristics,

especially in the frequency domain, producing artifacts in the dispersive relation that can

be difficult to distinguish. This issue presents another challenge when the spectral analy-

sis is deployed (Han and Birkeland, 1992). The energy deposition of the induced surface

propagation through the surface impact is normally very shallow (Viktorov, 1967), making

the ultrasonic assessment of the shell region ineffective.

Objective of Subsurface Narrow-band excitation

This research utilizes a narrow-band pizeoelectric transducer to generate consistent

elastic disturbance. Using the embedded waveguide specifically designed for this project,

the ultrasonic elastic wave is generated in the subsurface region of the medium. In turn,

this proposed technique eliminates any emission inconsistency and increases the energy
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deposition of the surface wave. The result enables the obtained waveform to be analyzed

in both temporal and spectral domains.

1.1.3 Physics-based Signal Analysis

Signal analysis is the main part of the NDE. Many studies in this area focus on data-

driven pattern classification through SVM or machine learning techniques and empirical

data to uncover the underlying features associated with the material characterization (Dack-

ermann et al., 2014). A number of studies have employed similar empirical approach.

Based on the issues discussed previously, the integrity of the data and the high variance in

the excitation technique can result in unreliable classification results.

Objectives related to Physics-based signal analysis

The signal analysis is built upon the understanding of the comprehensive formulation

for the shell region wave propagation. Employing the TF domain analysis, different arrival

wavepackets are identified and analyzed through the continuous wavelet analysis. The

result of the analysis provides both mechanical and moisture characteristics of the propa-

gating medium.

1.2 Outline of Dissertation

Chapter 2 outlines the research and development landscape of using NDE wooden util-

ity pole assessments.

Chapter 3 introduces the theoretical formulation of the embedded waveguide excita-

tion technique. This chapter introduces the constitutive equations under the steady-state

assumption. It yields theoretical findings that help characterize wave propagation and their
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relations to be propagating medium. This analysis is then used as the basis to estimate the

time transient model that mimics a typical ultrasonic transducer response.

Chapter 4 describes the implementation of a more precise numerical model containing

the wave interaction between the embedded waveguide and the orthotropic porous medium

that characterizes wood. The wave mode that dominates the shell region is thoroughly

investigated. The sensitivity of different signal characteristics is explored through different

simulated scenarios.

Chapter 5 introduces the employed signal analysis technique to help extract the discov-

ered features from Chapter 4. The extracted features are then used to coordinate with the

imposed scenarios, including mechanical degradation and high moisture concentration in

the porous medium.

Chapter 6 introduces a proposed preparation and procedures to conduct control exper-

iments. Using the developed hardware and proposed signal analysis technique, empirical

data are studied to validate the theoretical and numerical model. Further deployment of the

algorithm resulted in a feature plot help classify the GL condition.

Chapter 7 gives concluding remarks and suggests further avenues of research related to

this work.

1.3 Contributions

Specific contributions of this research are summarized below:

• A novel embedded ultrasonic waveguide capable of emitting subsurface elastic wave

disturbance (Chapter 3).

• Detailed analytical investigations of the embedded ultrasonic waveguide excitation

under the steady and quasi-steady state limits (Chapter 3).
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• A comprehensive numerical model to describe the wave characteristics in the or-

thotropic and porous medium (Chapter 4).

• Detailed investigation of the Rayleigh mode propagation in the shell region using the

proposed embedded waveguide excitation (Chapters 3 and 4).

• Detailed analysis of the wave disturbance estimation using dual waveguide configu-

ration under both Cartesian and cylindrical symmetries (Chapters 3 and 4).

• Discovery of the arrival wave mode and the development of a dedicated signal anal-

ysis algorithm (Chapter 5).

• Moisture content and mechanical property determination using scalogram and the

extraction of the corresponding features (Chapters 5 and 6).

• Selected features were tested using empirical data, and a clear decision boundary was

determined in the proposed feature space. (Chapter 6).
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Chapter 2

Background and Literature Review

Non-destructive evaluation methods of wooden utility poles are categorized into the fol-

lowing groups: radiographic, chemical, resistograph, thermographic and ultrasound. The

radiographic technique uses radioactive source to generate penetrating radiation through

the material. As the radioactive photons are ejected from the source, the energy deposition

is proportional to the material along the ray trajectory. The first x-ray-based examination

was introduced by (Zucker et al., 1940). Over the years, continuous attempts have been

made to automate the process from rotating computed tomography (CT) scans to analyt-

ical software to derive physical properties based on the radiograph results (Davis et al.,

1993) and (Schmoldt et al., 1993). However, systems are normally very heavy and require

extensive setup time.

A technique of using the chemical inspection approach was early published by Eslyn

(Eslyn, 1970). Chemicals such as bromocresol green and methyl orange, chrome azurol-s

create discoloration as an indicator for the presence of rot in a wood specimen. However,

this method presents a limitation because it is merely a binary indicator without information

about the severity and the size of the decay. It is also limited to surface detection and offers

no information about the interior of the pole.
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Infrared due to external heating was also examined by remote sensing the radiating

infrared signal, thermographic technique was developed to infer physical properties. Most

of the work was performed by Wyckhuyse (Wyckhuyse and Maldague, 2001). However,

this technique has a number of issues. The low conductivity of wood only allows the

infrared to penetrate about 9.5 mm, limiting the detection of internal decay. Extracting

information of the moisture content based on the heat signature does not always warrant

the decay of wood, as decay occurs when temperature, moisture content and even pressure

are at particular levels.

The resistograph was introduced by Rinn et al. in 1996 (Rinn et al., 1996). This tech-

nique exploits the difference in density between the healthy and decayed wood using a

simple drilling device with a small drill bit. Healthy wood and decayed wood have distinct

differences in terms of physical properties. The resistance from the counter-torque expe-

riences by the drill bit can be correlated to the material density (Winistorfer et al., 1995).

In other words, When a drill bit encounters a healthy wooden medium, which has a higher

density than a decayed wood, the removal of denser material corresponds to more mass.

It results in an elevated resistance that counteracts the rotational motion generated by the

drill. By measuring this counter-torque by a means of the change in electrical load as it

penetrates through different regions, the resulted amplitude profile versus the depth of pen-

etration is the resistograph depicted in Fig. 2.1. This technique presents a few limitations.

It is required to drill into the heart region of the pole and the examination of the local area

does not necessarily correspond to the global condition of the entire region of interest.

This study focuses on the employment of elastic wave propagation to characterize the

medium. This technique is often referred to as the ultrasonic-based NDE. It begins by un-

derstanding the wooden pole structure, the medium, and the widely accepted decay mech-

anisms. The current state of the ultrasonic-based NDE will be introduced, including the

governing model, the required hardware implementation and the signal analysis schemes.
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a)

b)

Figure 2.1: An example of a resistor graph and empirical correlation to density (Isik and
Li, 2003)

2.1 Background of Wooden Utility Poles

Wooden utility poles constitute the majority of all utility poles in the United States

(Bolin and Smith, 2011). Based on the standard provided by the United States Department

of Agriculture (Wolfe and Moody, 1997), Southern Pine, Douglas Fir, Cedar and Northern

Red Pine are the most common species due to their excellent mechanical properties (fiber

strength, Young’s Modulus etc) that meet or exceed the minimum quality specifications.

Wooden utility poles, as depicted in Fig. 2.2, resembles a cantilever beam structure. It
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consists of the above-ground and the underground segments, separated by the GL. The

initial commissioning of wooden utility poles was done to distribute communication signal

from Washington D.C. Capitol Building to Baltimore railroad station. Invented by Samuel

Morse in 1843, the design of a wooden pole has not been revolved too much (Bernhardt,

2017). The specifications and dimensions for modern wood utility pole are governed by

the American National Standard for Wood Utility Products (ANSI, 2017).

Vertical Component

Longitudinal 

Component

Transverse 

Component

Figure 2.2: An illustration of the pole structure

According to the standard, approximately 10% of its length plus 4 feet must be buried

under ground. With an established soil condition, the groundline region bears a significant

amount of bending stress which is determined by the following (Hibbeler and Fan, 2004),

σmax =
Mc

I
, (2.1)

where M is the bending moment, and is a function of the loading condition imposed on

the pole. c is the perpendicular distance from the axis of symmetry to a point farthest away
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from the neutral axis. I is the moment of inertial of the cross-sectional area with respect

to the longitudinal axis. For a cylindrical object like a utility pole, I = mR2/2, where m

is the mass of the object and R represents the radius. This analytical expression reveals

that under a specific load condition, the groundline region experiences the most bending

moment. Furthermore, the bending stress is concentrated at the circumferential region.

An experiment conducted by (Sandoz and Vanackere, 1997) employed 200 used poles and

observed the locations of failures. Among the sample population, it appears that the failure

often occurs few centimeter above the goundline. The result is illustrated in Fig. 2.3.

Figure 2.3: Pole failure location with respect to the ground level at zero. Figure was ex-
tracted from (Sandoz and Vanackere, 1997).

Normally, the load supported by an utility pole consists of three components: vertical,

longitudinal and transverse component (shown in Fig. 2.2) (Keller, 2010) and (Wolfe and

Moody, 1994). The vertical load is in line with the axis of symmetry along with the di-

rection of gravitation. This load is the sum of the weight of the pole, the weight of the

conductors, and other attached electrical and communication equipment might be present

on the top of a pole. The longitudinal load corresponds to the horizontal component from

the weight of the conductors. It is a function of the sag and tension values of the conduc-

tors. It largely depends on the geometry of the attached conductors. Environmental factors
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such as ice and wind can generate an additional load perpendicular to the plane formed by

the vertical and the longitudinal components. This is defined as the transverse load. The

environmental or climatic condition depends heavily on the geographical location. A map

designating different transverse load zones based on the geographical location is depicted

in Fig. 2.4.

Figure 2.4: A loading zone of utility poles in the United States

2.1.1 Hierarchical View of Wood and Porosity

A tree of a preferred species is milled to a defined specification to produce a wooden

utility pole. The background information about the wood structure is important for the

later Chapters. Fig.2.5 progressively dissects a tree from the macroscopic to the micro-

scopic level. In the macroscopic view, the difference in growth rates in the spring and

the autumn results in different wood densities. The density variation creates the so-called

annual ring. Such a variation can be as large as 50% according to (Koubaa et al., 2002).

The annual ring grows every year in the radial direction. This growth process renders the

mechanical properties to have the directional dependency in the radial, tangential and lon-

gitudinal directions, which it is often termed the orthotropic medium. By zooming into

each annual ring, we can explore the cell level in the millimeter scale. In Fig. 2.5, a bound-
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ary separating the spring and fall woods is clearly shown. There are two different fibrial

structures forming a network of channels to support the growth. The ray cells constitutes

about 10% of the wood) orienting in the radial direction, and the remaining fibers position-

ing in the longitudinal direction transports water and nutrients from the roots to the leaves.

The cellular structures of the fibers form a porous medium that is governed by another

set of principles which will be discussed in Chapter 4. Further magnification reveals the

primary and secondary cell walls shown in Fig. 2.7. This structure is considered as a com-

posite material. The progression of growth starts with the construction of the primary wall,

followed by the three secondary walls. Each cell wall is constructed by the microfibrils

material. S2 is the thickest layer dominating the effective mechanical property. S2 contains

microfibrils that are oriented closely along the longitudinal direction. It is the orientation

of the microfibrils material that contributes to the unique physical properties, and the main

load-bearing elements in wood. Through the technique of nanoindentation conducted by

(Gindl et al., 2004), the mechanical properties of the wood cell can be examined. Fig. 2.8

shows the distribution of the mechanical properties based on the microfibril angle (MFA). It

suggests a correlation between mean MFA and mechanical properties. This insight into the

microscopic properties will be later used in Chapter 4.1.3 to develop a numerical technique

transforming the microfibril properties into effective mechanical properties in the macro-

scopic level. A further looking into the molecular level, the fundamental constituents of

wood are the cellulose, hemicellulose and lignin (Shmulsky and Jones, 2019). Cellulose is

a replication of the molecule (C6H10O5) jointed together to form the polymer. Each poly-

mer can have a long-chain of at least 10,000 molecules. A familiar example of cellulose

is cotton which is 99% pure cellulose. It is a polymer synthesized within the living cells

from the glucose-based sugar nucleotide through photosynthesis process converting water

and carbon dioxide into glucose and other simple sugars. The second constituent is Hemi-

cellulose. It is a product of other sugar derivatives from the leaves such as glucuronic acid.
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They are relatively smaller polymers compared to cellulose. These hemicellulose polymers

are made from about hundreds of sugar units. The final constituent is the Lignin. It is com-

posed of carbon, hydrogen and oxygen, forming a stable structure linking different wood

cells. Within each cell wall, lignin intimately intertwines with cellulose and hemicelluloses

giving further rigidity to the medium. Furthermore, Lignin contains toxic chemicals, which

forms a layer of protection against decay and insect attacks.

Figure 2.5: Hierarchical order of a wooden structure (Bucur, 2006).

2.1.2 Brief Overview of Decay Fungi

One of the primary processes that degrades the quality of wood fiber and ultimately

makes them unsuitable for service is the natural decay process. Statistically, more than

50% of pole removal is done due to decay as shown in Fig. 2.9. In general, brown-rot and

white-rot are the two primary types of rotting processes that attack softwood. Regardless

of which rotting process is occurring, proper moisture content and temperature are required

to support the fungal growth. The decay occurs when the moisture content is above 30%

(Green III et al., 1995). In addition, the favorable temperature needs to be between 35oF

and 100oF (Eaton et al., 1993). Based on the favorable environmental condition for fungal
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Summerwood

Springwood

Ray cells

Figure 2.6: Enlarged view of fibers in Douglas-fir (Morrell, 2012).

growth, Fig. 2.10 shows a map of the United States divided according to the risk level of

decay. The decay process affects both the microscopic and macroscopic integrity.

Microscopically, when white-rot associated fungi is introduced into the wood, a net-

work of hyphae begins to digest the cell wall material resulting in cell wall thinning.

Through a slow decomposition process, the wooden material begins to shrink, forming

cavities within the cell walls (Cowling, 1961). Normally, white-rot does not exhibit any

dark-colored residual material.

Unlike white-rot, the cells that are attacked by solitary hyphae are classified as brown-

rot. The decomposition is rapid, and uniform and dark-colored appear in the infected ma-

terial. Prior studies suggest that the brown-rotted wood does not experience wall thinning

until in later stages (Cartwright and Findlay, 1943). Since solitary hyphae plays a major

role in the decay process, irregular decomposition from cell to cell can often be observed.
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Figure 2.7: Cell structure (Haygreen et al., 1996).

In the moderate stage of brown rot, cracking within the cell wall can often be seen until it is

completely penetrated in the later stages. In the advanced stage, the cell wall can be com-

pletely destroyed (Pechmann and Schaile, 1950). In both cases, the subsequent reduction

in porosity at the submicrobial level can be measured. (Cowling, 1961).

The processes of translating the microscopic degradation to macroscopic degradation

are detailed in other studies. The latest experiment using the so-called "cake-pan" method

was performed (Winandy et al., 2000). The experiment exposes several wood specimens to

two monocultures of brown fugui (Gloeophyllum trabeum and Postia Placenta) for a period

between 3 to 12 days. Based on the different incubation period, the exposed specimen are

mechanically tested to evaluate the correlation between the progression of decay and the

mechanical properties. Fig.2.11 suggests that when the fungi are introduced, the mechan-

ical properties, modulus of elasticity (MOE) and modulus of rupture (MOR) and density

are reduced. Weight loss associated with the digestion of the cell wall also occurs but at a
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Figure 2.8: Mechanical properties of the cell walls obtained from the nanoidentation tech-
nique. (Gindl et al., 2004).

Figure 2.9: The composition of the removal due to various circumstances (Morrell et al.,
2006)

18



Figure 2.10: Relative decay risk in the United States divided by region (1 = low risk, 5 =
high risk)(Morrell, 2008)

slower rate compared to the mechanical properties. This important finding has a significant

implications in elastic wave propagation which will be further explored in Chapter 3.

2.1.3 Preparation and Preservatives

In the final stage of the manufacturing process, wood poles are subjected to chemical

treatment in order to prolong their service lives. Cycling through the decompression and

compression processes, the preservatives are forced into wood interior to a desired depth of

penetration at a level of retention. As an example, a full-cell process begins with the vac-

uum pressure (below atmospheric pressure) to draw the air out from the wood fiber matrix.

Then, preservatives are introduced with an increase in pressure to around 100 to 150 psi, in-

fusing the chemical into the wood. The desirable amount of chemical penetration depends

on exposure time in the high-pressure environment. In order to prevent any chemical from

bleeding out, which is called kickback, subsequent vacuum pressure is applied to minimize

the effect (Barnes, 2007) when it is exposed to the atmospheric environment. The mini-
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b)

Figure 2.11: Empirical result of the relations between MOE, MOR and weight loss (%)
(Winandy and Morrell, 1993).

mum levels for penetration and retention of preservatives are defined under the AWAP. A

figure provided by (Morrell, 2008) illustrates the compression and decompression cycles.

There are two different categories of preservatives: oil-based and water-based (Morrell,

2008) and (Filter, 1984). The main active ingredient in the oil-based preservatives are

arecreosote, pentachlorophenol (penta), and copper naphthenate. Due to the toxicity of oil-

based preservatives, its use is highly regulated and monitored. Water-based preservative,

on the other hand, is not as restricted as the oil-based preservative. It contains at least

90% water and only 10% toxic chemicals and produces clean, residue-free surfaces. The

primary active ingredient includes copper, zinc and arsenate. The wider use of water-based
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preservative increases its moisture content within the wood cells. The distinction between

elevations due to natural moisture and treatment needs to be distinguished to prevent false

positive detection of potential decay. This issue has been noticed in the industry about

distinguishing a decay accompanied by high moisture content and a simple high moisture

content due to treatment. In this study, this challenge will be addressed in Chapter 4 and 6

.

Figure 2.12: Process for impregnation of preservatives into wood.

2.2 Literature Review of Ultrasonic-based Evaluation

By definition, acoustic and ultrasonic techniques utilize the propagation of elastic de-

formation to characterize the material property. It has been a standard NDE technique in

the industry to evaluate and characterize metals. The first study of evaluating various NDE

performance for wooden material characterization started in 1981 by Szymani (Szymani

and McDonald, 1981) and Gerhard (Gerhards, 1982). Among various NDE techniques,

Szymani concludes that the ultrasound is the most promising technique that can quickly as-

sess utility poles if the sensor coupling could be overcome. Due to the porous and uneven

features on the wooden surfaces, it is a technical and logistic challenge of how to bypass the

resulting signal variation. This study precisely focuses on it by offering a potential solution.
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This section introduces the fundamental technologies and understanding behind ultrasonic-

based non-destructive evaluation. It includes the analysis of wave mechanics, the existing

elastodyamic models and the typical hardware implementations of this technology.

2.2.1 Wave Pattern

Phase Velocity

The phase velocity is based on the wave equation derived from the first principle in

solid mechanics. The phase speed is measured as a function of density and elastic moduli

(e.g., Young’s and shear moduli). The first noticeable experiment that correlates the initial

TOF and the elastic moduli is based on the work by Sandoz (Sandoz, 1989), the result

shown in Fig. 2.13 suggests a good correlation with the correlation coefficient of 0.82.

Due to the dispersive property of wood, Bucur (Bucur, 1983) examined the variation in the

phase speed at frequencies of 80 kHz to 2 MHz. The findings concludes that velocity has

a spectral dependency in the longitudinal mode. Through regression analysis, Bucur also

found a high correlation among the elastic modulus, density, and phase velocity. Under the

groundline cross-sectional configuration, the fiber direction with respect to the propagation

direction strongly affects the phase velocity of the elastic wave. A study emphasizing the

effect of the grain angle on the radiation source in the longitudinal-radial plane was con-

ducted by Suzuki (Suzuki et al., 1990). It suggests that the ultrasonic phase velocity would

decrease during the angle when the source and grain direction is between 0o and 45o, but

when the grain angle increases further from 45o to 90o degrees, corresponding to the cross-

section region, the change is less pronounced. This finding is a good indication that it is

safe to neglect the effect of the fiber angles when using elastic waves to characterize the ma-

terial property. In the cross-sectional plane, work performed by Mishiro (Mishiro, 1996a)

and(Mishiro, 1996b) details the analysis of how elastic wave speed is affected by the an-
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nual rings. More specifically, an empirical model was developed, suggesting the principle

propagation speed in any direction is a nonlinear combination of the tangential and radial

components. This is another evidence suggesting orthotropy of the wood medium.

Figure 2.13: Experimental result of modulus of elasticity versus velocity squared. (Sandoz,
1989)

Energy Absorption

Wood is considered as a sound-absorbing material due to its microscopic porous struc-

ture. Hence, the energy absorption of the elastic wave or often referred to as the attenuation

has been studied. One of the pioneering work in this area was conducted by Bucur in 1992

(Bucur and Feeney, 1992). The experiment uses the acousto-ultrasonic (AU) pulse-echo

technique illustrated in Fig. 2.14 to examine the attenuation of energy at different dis-

tances. Attenuation was measured using decibels per centimeter of various frequencies.

This study concludes that the energy absorption of the elastic wave has both the spectral

and directional dependencies. More specifically, high-frequency elastic waves tend to at-

tenuate quicker in wood. In the cross-sectional region, the tangential direction has a higher

attenuation compared to the radial direction.

When applying for log production inspection, a study conducted by Han (Han and

Birkeland, 1992) examines the cross-sectional wave propagation by positioning the trans-

ducers at the opposite ends (0o and 180o ). By detecting and analyzing the initial energy
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Figure 2.14: Experimental set up using pulse-echo technique (Bucur and Böhnke, 1994)

curve, two attributes are obtained: propagating time and the energy attenuation. Employ-

ing the fuzzy set theory developed by Zadeh (Zadeh, 1965), membership curves of velocity

and energy attenuation are created. The membership curves are classified into low, normal,

and high velocity groups and the normal and high attenuation groups. The detection result

was compared with the computational x-ray tomography (CT) and a qualitative agreement

was reached. Built upon the findings from his study, this work adds the following improve-

ments:

• Elastic wave model is incorporated into model so that the different energy peaks

within the wave pattern can be associated with the region within the wooden pole.

This arrival mode analysis approach provides greater details about different regions

within the cross-section.

• Peak detection algorithm from Han employs the root mean square (RMS) measure-

ment, this can be improved with the TF domain analysis which will be later intro-

duced.

• Han’s approach of using standardized membership function via fuzzy set can be im-

proved by integrating arrival plot and attenuation into one single representation for

pattern classification.
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In the following sections, the backgrounds regarding the prior work of the elastic wave

propagation model and the signal analysis will be discussed.

2.2.2 Elastodynamics Model

The wave propagation characteristics in wood is a classical elastodynamic problem. A

systematic approach of high-fidelity numerical model that represents the wooden medium

has yet to be fully developed. Early models use the isotropic assumption to analyze the

elastic wave propagation within the cross-section domain. One of the first finite element

models was developed by Wilson in 1965 (Wilson, 1965) to study the elastodynamics in

solid under the cylindrical symmetry. It establishes the foundation for later development of

the first finite element method (FEM) specifically for wood (Bulleit and Falk, 1985). By

employing the isotropy, the wavefronts moving radially and tangentially were noted. An

improved numerical model employing orthotropic property was developed analytically and

numerically by (Senalik, 2013) and (Payton, 2003), the results are depicted in Fig. 2.15.

They both produce a time progression of the dilatational (often referred to as the longi-

tudinal mode) wave propagation at different times. The result shows an initial radiation

pattern of a point source, forming a beam-like feature in the orthotropic medium. As the

initial wavefront reaches the center, the orthotropy of the medium scatters the energy in all

directions forming a radially expanding wave with axial symmetry. This study will recreate

the numerical result and emphasize the shell region with enhanced features. In addition,

this work highlights that the inclusion of orthotropy and the intrinsic annual rings is impor-

tant. The embedded waveguide interaction with the orthotopic medium will be analyzed

systematically to ensure its accuracy. To further increase the fidelity, this study will explore

the viscous damping effect based on the Biot-Allard’s poroelastic propagation model.
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Figure 2.15: Dilatational wave motion produced by (Senalik, 2013) column 1 and (Payton,
2003) in column 2 at a) 43 µs, b) 116 µs, c) 129 µs and d) 172 µs

2.2.3 Hardware Implementation

A portion of this work contributes to the development of a industrial graded ultrasonic

instrumentation, a joint effort between the University of Denver and a private company,

Utility Asset Management Inc (UAM). Before introducing the system in Chapter 6, this

section will introduce the technical background associated with the development of the ul-

trasonic devices. In order to produce and receive an ultrasound, the instrument consists of

two critical components. They are the ultrasonic transducer that employs the pizeoelec-

tric effect, and the driving and receiving circuits. Ultrasonic transducers are categorized

into two different types: the narrow-band and the broad-band transducers. Broad-band

transducers are normally used in applications that require short pulses and broad spectral

analyses. The short pulses enable the examination of the signal response over a continuous
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range of frequencies. These characteristics allow such kind of transducers to be used in

non-destructive testing and evaluation of materials. The current state of the broad-band

transducers normally ranges from few hundred kHz to several MHz for achieving small

wavelength/high spatial resolution. This study focuses on using the narrow-band ultra-

sonic signal to characterize the medium. Related literature can be found in (Goll, 1979),

(Gallego-Juarez, 1989) and (Ultrasonics, 1975).

A narrow-band transducer is defined as the bandwidth to be a few percentages of the

center frequency. This type of transducers tends to be in the low-frequency range and are

used in high power applications. The Langevin transducer is one such example. However,

most wood-related studies have discarded it due to the narrow-band spectral information

this kind of transducers can provide. Narrow-band transducers offer analytical advantages

and the capability to material characterization, which will be detailed in Chapter 3.4.

This section will introduce the piezoelectric transducers and the associated piezeoelctric

effect. Simple circuitry for the excitation signal, reception circuit and the data acquisition

will be briefly discussed. Finally, some of the experimental and industrial grade instruments

will be introduced.

Fundamental Principles

The heart of an ultrasonic transducer is the piezoelectric ceramic. This material pos-

sesses a unique property, which can expand and contract in the same direction as the applied

electric field. The phenomenon is governed by the piezoelectric effect discovered in 1880

by Pierre and Jacques Curie. Originally, piezoelectric ceramic are ferroelectric crystallites

which are isotropic. When a low-level electric field is applied, the random orientation of

the displacement fields within each crystal cancels out each other, exhibiting no overall dis-

placement. This is called the unpolarized state of a piezoelectric ceramic. It is important to

polarize all the different displacement vector by the so-called poling treatment. The poling

27



treatment applies a high energy electric field in a desire orientation, forcing the polar axes

of the crystallites to point close at the direction of the applied electric field. The result is a

permanent polarization. Figure 2.16 illustrates the unpolarized and polarized piezoelectric

crystal.

Figure 2.16: Alignment of the domain displacement before and after a poling treatment is
applied. (Gallego-Juarez, 1989)

To understand basic construction of a piezoelectric transducer, the piezeoelectric effect

is introduced. The equation of motion of the piezoelectric behavior is described by the

following set of equations.



x = dE,

E = gX,

k2 =
stored electric energy

input mechanical energy
,

Qm =
ω0

2∆ω
.

(2.2)

The first equation of (2.2) relates the imposed electric field E and the induced strain x. d is

the piezoelectric strain constant. The second equation of (2.2) describes the induced elec-

tric field E and the external stress X with the piezoelectric voltage constant g. The relation
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between g and d can be related by the expression: g = d/ε0ε where ε0 is the permittivity of

free space and ε is the relative permittivity. The third equation is the electromechanical cou-

pling factor, which describes the conversion rate between electrical energy and mechanical

energy. k2 is an critical quantity that differentiates the qualities of different piezoelectric

material designs. For simple geometries, the coupling factors are depicted in Fig. 2.17. Qm

Figure 2.17: Piezoelectric resonance modes and the corresponding coupling fac-
tors(Uchino, 2012), the shaded areas are the applied electric field.
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in the final equation is called the mechanical quality factor, ω0 is the resonance frequency,

and ∆ω denotes the full width of the spectral response centered at the resonance. High

Qm indicates a sharp spectral response about its resonance, and low Qm generates a flatter

spectral response about its resonance (off-resonance frequency). In the next section, these

quantities will be explored to understand the behaviors of the piezoelectric material and the

design principles behind a piezeolectric transducer.

A Brief Overview of Pizeoelectric Materials

Wooden medium holds the physical characteristics of a porous medium. Its spectral

response suggests a strong energy dissipation. In addition, wooden medium has a very

different acoustic impedance compared to metal. In order to transmit elastic wave through

high attenuating medium with pronounced impedance mismatch, high-power transducers

are required (Gallego-Juárez et al., 1978). In order to produce a high-power transducer,

a selection of pizeoelectric material is critical. This section is to provide an overview of

some widely used piezoelectric materials in high-power applications.

Piezoelectric materials are categorized into single-crystal and polycrystalline. Their

piezoelectric properties are shown in Fig. 2.18. Quartz is the only single-crystal in the

list, while it has a high voltage constant and mechanical quality factor, the coupling factors

kt and kp values are low compared to the polycrystal. The polycrystalline materials are

well-rounded in terms of exhibiting good piezoelectric properties. Hence, piezo-ceramic

have been widely used in a large number of applications due to its desirable piezoelectric

properties across the different piezoelectric parameters (e.g., d, g and k). Within the piezo-

ceramic category, lead zirconate titanate or the PZT family has proven to have the best d and

k properties. The PZT family is divided into three subcategories: soft, semi-hard and hard

PZTs. The soft PZTs exhibit high k, d and ε values, but with low Qm, produces a rather

broader spectral response. They are suitable for off-resonance applications. Hard PZTs,
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exhibit a high Qm value, which is suitable for resonance application. Fig. 2.19 shows

the differences among the subcategories of PZTs. In a high-power application where a

narrow-band spectral response is desirable (Gallego-Juarez, 1989), PZT-4 is an preferred

choice.

Figure 2.18: Piezoelectric properties of typical PZTs (Uchino, 2012)

Figure 2.19: Piezoelectric properties of typical PZTs (Gallego-Juarez, 1989)

Transducer Designs and Driving Circuit

In practice, a piezoelectric ceramic is pre-stressed. The stored mechanical energy

amplifies the amplitude of the energy emission when an external electric field is applied

(Uchino, 2012). During the manufacturing of a narrow-band transducer, a pre-compression
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bolt with typical stress of 300 kg/cm2 is used to create the desired condition. A sectional

view of a narrow-band Langevin transducer is depicted in Fig. 2.20. The transducer con-

sists of the back section, the pre-compression bolt, piezoelectric ceramic and the output

section. The back section is made of a denser and heavier material than the output section.

This design allows the vibration energy from the piezoelectric material to be directed to the

front output section. The live terminal and the ground are the electrodes for generating the

electric potential across the piezoelectric ceramic.

Figure 2.20: A sectional view of a Langevin transducer (Gallego-Juarez, 1989)

To excite the transducer, different electrical pulse shapes have been studied in literature

(Okyere and Cousin, 1979), (Hayward, 1985) and (Ramos-Fernández et al., 1987). The

most common pulse shape uses high-voltage square wave modulation. Circuitry capable

of producing high voltage pulses is termed pulser circuit. It is normally constructed with a

low voltage pulse generator, which can be both fixed or adjustable frequency to produce a
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reference square wave. With a high-voltage DC power supply, the reference square wave

and the high voltage power supply are combined in the power stage to create high-voltage

square pulses. This high-voltage square pulse is the driving circuit for the piezoelectric

transducer. Fig. 2.21 shows an example of a power stage circuit. The DS0026 is a MOS-

FET driver to send the modulated square wave to the MOSFET. It is connected to the high

voltage DC supply through a pull-up resistor, which is used to apply the reference signal.

Further downstream, the combination of a capacitor and the damping resistor Rd is used to

damp out any high-frequency components in the leading and trailing edge of the pulses.

Figure 2.21: A simplified circuit diagram of the power stage circuit(Salazar et al., 2003)

Interface Coupling

Due to the dissimilar material between the transducer and the wooden surface, energy

loss due to mode conversion is inevitable. This is termed acoustic impedance mismatch.

This phenomenon causes a portion of the wave energy to be reflected back to the trans-

ducers at the interface. For incident wave traveling perpendicular to surface, the acoustic

impedance is defined as Z = ρcL. To minimize reflection, water or oil-based couplant is

often used as a mediator to reduce the amount of reflection due to the mismatch. In addi-
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tion, the porous nature of the wooden surface, where the material is in the two-phase state

(air and solid are co-existed). A certain amount of coupling pressure must be applied to

ensure most air-packets are displaced to reduce any interference during the energy trans-

mission (Beall, 2002). Experiments have shown that there will be a loss of about 20-30 dB

if couplant is not used. With all the proposed methods, a considerable amount of variations

can still be introduced because of the surface variation. It presents a challenge in some

research (Han and Birkeland, 1992).

The emerging air-coupled ultrasonic (ACU) technologies have started to be adapted in

the industry when the use of couplant is unfeasible. With the absence of the couplant and

physical contact, the testing can be performed with high efficiency and high reproducibility

(Sanabria et al., 2011). However, the drastic difference in the acoustic impedance between

wood and air only permits 0.1% of the emitting energy to be transmitted (Fleming et al.,

2005). Even though this technology might be truly a non-destructive evaluation, its lim-

ited energy penetration depth confines its applications to specimens with small geometric

dimensions, making this technology unsuitable for GL cross-sectional assessment.

To transmit a significant amount of energy into the medium without concerning any

surface variability, the proposed technique in this work is to insert a small waveguide into a

specimen directly. It creates a 4-mm diameter circular cross-section with an insertion depth

of 1 cm. An ultrasonic transducer is then mounted to the back to generate the oscillating

load. Many utility firms have accepted this approach due to the small insertion. This

technique is termed the embedded waveguide excitation. It induces surface wave modes

with high strong energy deposition critical for the shell-region assessment. We will revisit

this method in chapter 3, 4 and 6.
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2.2.4 Signal Processing

The TOF measurement is the most basic method to assess wood quality. It is a measure

of the time difference at the moments of transmission and the first detectable wavefront.

If a void or a significant decay exists internally along the path, the elastic wave will tend

to propagate at a slower phase speed, resulting in a longer TOF (Wang et al., 2004), an

indication of decay. However, wood is classified as an orthotropic material with a complex

internal structure, wave propagating in a non-linear wooden medium creates complicated

temporal and spectral responses in different wave modes. In addition, if the detection of the

initial arrival is based on the signal amplitude being above the noise floor, detecting this ar-

rival presents a challenge, in a highly attenuating medium. Using propagation velocity such

as TOF as a sole metric in wood to help determine decay conditions appears to be unreli-

able for determining the conditions based on the data presented by (Winandy and Morrell,

1993). In his paper, a wood species is exposed to different fungus agents to induce both

brown-rot and white-rot decays. The specimen is then tested by measuring the wave speed.

The resulted TOFs are measured. The empirical data presented in (Winandy and Morrell,

1993) shows that TOF is almost insensitive to the severity of the decay. Consequently,

a slight instrumentation error in measuring TOF can give erroneous readings resulting in

misleading conditional assessment. Hence, other signal analysis techniques using a com-

bination of attenuation, waveform shape, and frequency content are also employed (Beall,

2002).

Signal attenuation can be measured by calculating the RMS based on the mean value

theorem (Prakash, 1980). This technique averages out all the signal variations destroying

the wave pattern which holds important information about different wave trajectories. An-

other similar technique (Kim and Heo, 2012) is to determine the moments of the signal
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which is expressed as,

Mn =

t2∫
t1

y(t)tndt (2.3)

where y is the deterministic time signal. n is the moment order and t is the time domain of

the signal. By dividing the first moment (n = 1) by the zeroth moment (n = 0), it results

in the so-called time centroid (TC). This metric is based on the shape of the waveform to

determine the arrival time of the wave more accurately. In a medium where reflection and

mode changes occur frequently, the waveform tends to skew resulting in a shift in the TC.

The time centroid can be a measurement of the level of reflection.

Other additional techniques are used based on the broadband transmission of the ul-

trasound. Due to the dispersive property of the medium, the ultrasonic characteristics,

including group propagating speed and amplitude response, are functions of the imposed

frequency. Advanced signal analysis and empirical model based on the dispersion curves

(Bucur, 1983) are developed. Since this work focuses on the narrow-band transmission, the

representative work will not be further discussed. For readers who are interested, they can

be found in (Tallavo et al., 2012), (Senalik, 2013) and (Dackermann et al., 2014).
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Chapter 3

Estimation of Half-space and Subsurface

Excitation

3.1 Electrodynamics in Isotropic Medium

To study the response analytically, steady-state approach is used to help simplify the

formulation. A steady-state classical elastodynamic formulation governs the equation of

motion (EOM) for elastic wave propagation in an isotropic solid is based on the Navier

equations (Kolsky, 1963). The origin of the Navier’s equation is detailed in Appendix A.

With the absence of the forcing term, it is expressed as follow,

(λ + ν)∇(∇u) + µ∇2u = ρ
∂2u
∂t2 , (3.1)

where u denotes the displacement field in 3-dimensional space u = [u1, u2, u3]. µ and

λ are the Lamé constants describing the physical properties of the propagating medium, ρ

is density, ∇ is gradient operator expressed as ∇ = [∂x, ∂y, ∂z] and ∇2 is the Laplacian

operator.
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By employing the vector identity,∇2u = ∇∇·u−∇×∇×u, (3.1) can be expressed

as,

(λ + 2ν)∇(∇u)− µ∇×∇× u = ρ
∂2u
∂t2 . (3.2)

The total displacement field can further be decomposed into a scalar field and a vector field

using the Helmholtz decomposition. That is,

u = ∇φ +∇×ψ. (3.3)

It allows the Navier equation to be expressed in terms of the displacement potentials. That

is,

[
(λ + 2µ)∇∇ · (∇φ)− ρ∇∂2Φ

∂t2

]
− µ∇×∇×∇φ

+ (λ + µ)∇∇ · ∇×ψ +

[
µ∇2∇×ψ−∇× ∂2ψ

∂t2

]
= 0. (3.4)

The diminishing nature of (3.4) demands the following relation for the potentials to hold

true, [
(λ + 2µ)∇∇ · (∇φ)− ρ∇∂2φ

∂t2

]
− µ∇×∇×∇φ = 0; (3.5)

(λ + µ)∇∇ · ∇×ψ +

[
µ∇2∇×ψ−∇× ∂2ψ

∂t2

]
= 0. (3.6)

(3.5) and (3.6) implies that in a unbonded medium without the forcing function, the poten-

tial fields can be decoupled, and each equation describes the EOM for each potential. By

employing the following vector identities,

∇×∇×∇φ = 0 and ∇ · ∇×ψ = 0,
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a few mathematical manipulation yields a set of elliptical wave equations for each potential

field.

∇2φ =
1
c2

L

∂2φ

∂t2 ,

∇2ψ =
1
c2

T

∂2ψ

∂t2 .
(3.7)

where cL is the phase speed associated with the scalar potential φ expressed as c2
L = λ +

2µ/ρ and c2
T is the phase speed associated with the vector potential ψ expressed as c2

T =

µ/ρ. The scalar potential is often referred to as the longitudinal mode and the vector

potential is often referred to as the transverse mode. The solution to the decoupled wave

equation can be solved analytically using the method of "separations of variables". An

assumed solution is a product of the spatial and temporal functions denoted as X and T

respectively.

φ(x, t) = Xφ(x)Tφ(t);

ψ(x, t) = Xψ(x)Tψ(t).
(3.8)

Based on a well-known priori that the wave equations will resolve in a time harmonic

function. That is, T(t) = eiωt, where ω is the fundamental frequency of the oscillation.

The assumed form allows (3.7) to further reduce to the following expression:

∇2φ + k2
l φ = 0;

∇2ψ + k2
t ψ = 0,

(3.9)

where kt and kl are the wavenumbers associated with the transverse and longitudinal modes

respectively. Under the isotropic assumption, the wavenumber kl and kt are expressed in

the following: kl = ω
√

ρ/(λ + 2µ) and kt = ω
√

ρ/µ.
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The stress-strain relation for elasticity in the indicial notation is written as,

σij = λσijεkk + 2µεij, (3.10)

where εij is the strain equation which can be expressed in terms of the displacement field,

that is,

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (3.11)

By substituting (3.11) and (3.10) and expressing the displacement fields in terms of the

potentials, it produces the EOM for each stress component.

σxx = λ

(
∂2φ

∂x2 +
∂2φ

∂z2

)
+ 2µ

(
∂2φ

∂x2 −
∂2ψ

∂x∂z

)
,

σzz = λ

(
∂2φ

∂x2 +
∂2φ

∂z2

)
+ 2µ

(
∂2φ

∂x2 +
∂2ψ

∂x∂z

)
,

σxz = µ

(
2

∂2φ

∂x∂z
+

∂2ψ

∂x2 −
∂2ψ

∂z2

)
.

(3.12)

where σi,j represents the principle stress oscillation in the j-direction with propagation in

the i-direction.

3.2 Formulation of Diffusive Propagation

Fig 3.1 illustrates an embedded waveguide inserted in an arbitrary propagating medium

at a depth L. An embedded waveguide consists of the side and front radiating apertures.

These apertures are the physical boundaries separating the waveguide and the propagating

medium. The load application interface is where the elastic wave can be introduced. The

half-space boundary is the discontinuous interface separating the propagating medium from

the gaseous surrounding.
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Figure 3.1: A simplified diagram of the problem.

Based on the relatively small mass of the waveguide, we assume the reversible elastic

oscillations within the waveguide. Negligible energy attenuation as the elastic wave propa-

gating can be safely assumed. For simplicity, the isotropic condition is applied to the entire

domain of interest.

A conventional transducer, such as the Lavigne transducer, uses piezoelectric ceramic

(e.g., the lead zirconate titanate (PZT)) to convert between the electrical energy and the me-

chanical energy. This conversion rate is referred to as the electromechanical coupling fac-

tor with the fundamental mode in the longitudinal direction (Uchino, 2012) and (Gallego-

Juarez, 1989). It is reasonable to assume that the displacement potential φ possesses the

time-harmonic traveling wave of the form,

φwg = φ0ei(k0z−ω0t) f or x = 0 and z ∈ [0, L]. (3.13)

where the subscript wg denotes the waveguide medium. φ0 can be any arbitrary amplitude

modulating function. φ0 can be a constant and an arbitrary amplitude modulating function.

Under the steady-state condition, it renders the function φ0 at the boundary to be a constant.

In a real case, the time-transient response often occurs in an ultrasonic transducer which

renders the function φ0 to be a Gaussian function with a mean and a standard deviation. k0
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denotes the wavenumber of the longitudinal mode propagating along the waveguide. For

non-attenuating wave traveling along the waveguide, k0 is real (Achenbach and Epstein,

1967). L is the insertion depth.

The traction-free boundary condition can be imposed for the half-space between the

propagating medium and the surrounding air. That demands the stresses for the longitudinal

and transverse modes having the component in the z-direction to be zero (Viktorov, 1967).

That is,

σzz = 0 and σxz = 0 for z = 0. (3.14)

At the side aperture between the embedded waveguide and the propagating medium, the

no-slip condition of assuming displacement continuity is imposed. It implies the following

boundary condition for the displacement fields at x = 0:

W = Wwg for x = 0,

U = 0 for x = 0.
(3.15)

where Wwg is the disturbance of displacement within the waveguide.

3.2.1 Half-space Response

The assumed solution to the wave equations (3.9) is the traveling harmonic waves

(Rose, 2004) of the form,

φ0 = f (k+1 x + k+2lz−ωt) = A(t)ei(k1x+k2z−ωt);

ψ0 = g(k+1 x + k+2tz−ωt) = B(t)ei(k3x+k4z−ωt),
(3.16)

where k is the wave number defined as k = ω/c, and c denotes the phase velocity and

ω denotes the fundamental angular frequency of the propagating wave. k1 and k3 are the
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wavenumbers associated with the induced longitudinal and transverse components of the

Rayleigh mode traveling in the x-direction respectively, k2 and k4 are the transverse and

longitudinal components of the Rayleigh mode traveling in the z-direction.

Based on the Helmholtz decomposition (3.3), the displacement field in the z-direction

at x = 0 is written as

W = Ak2iei(k2z−ωt) + Bk3iei(k4z−ωt). (3.17)

Similarly, the displacement within the waveguide can be obtained. Enforcing the no-slip

boundary condition mentioned previously yields the following relation.

Ak2iei(k2z−ωt) + Bk3iei(k4z−ωt) = φ0k0iei(k0z−ω0t). (3.18)

(3.18) constrains the wavenumber and produces the following relations,

k2 = k4 = k0;

ω = ω0.
(3.19)

The governing equation also enforces the longitudinal and tranverse wave numbers kl

and kt to possess the following equality:

k2
l = k2

1 + k2
2;

k2
t = k2

3 + k4
4.

(3.20)

By combining (3.19) and (3.20), k1 and k3 have the forms,

k1 = (k2
l − k2

0)
1/2;

k3 = (k2
t − k2

0)
1/2.

(3.21)
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Invoking the stress-strain relation (3.12) and imposing the traction-free boundary con-

dition σxx = 0 and σxz = 0 yields the following algebraic relations,

λA
(

k1
2 + k0

2
)
+ 2µ

(
Ak2

0 + Bk3k0

)
= 0;

− 2Ak1k0 − Bk2
3 + Bk2

0 = 0.
(3.22)

ε and β are the wavenumber ratios . That is, ε = k3/k0 and β = k1/k0. By invoking a

Lamé relations: λ/2µ = ν/(1− 2ν), (3.22) relates the wavenumber ratio to the Poisson’s

ratio,

ε =
β− 2βν±

√(
β− 2νβ

)2
+
(
νβ2 − ν + 1

)2

νβ2 − ν + 1
. (3.23)

Since all wavenumbers are postive, only the positive quantity of ε is considered. The

absence of frequency dependency in (3.23) suggests that the ε and β do not exhibit any

frequency dispersion. Their values depend only on the Poisson’s ratio of the propagating

medium. Similar dispersion effect can be observed in the classical Rayleigh characteristic

equation (Rayleigh, 1885) in which the wavenumber ratio of the Rayleigh and the trans-

verse mode is only a function of the Poisson’s ratio ν.

By introducing the wavenumber ratios ε and β, (3.21) yields the following expression,

ε =

[√
1− 2ν

2− 2ν

(
β2 + 1

)
− 1

]1/2

. (3.24)

To eliminate one of the wavenumber ratios, (3.23) and (3.24) are combined to yield the fol-

lowing relation that satisfies both the no-slip condition and the governing wave equations.

β− 2βν +
√(

β− 2νβ
)2

+
(
νβ2 − ν + 1

)2

νβ2 − ν + 1
−
[√

1− 2ν

2− 2ν

(
β2 + 1

)
− 1

]1/2

= 0.

(3.25)

44



Given a specific Poisson’s ratio of the medium, (3.25) gives a unique β value. Using (3.23)

and (3.24), each ν value produces a solution set of β and ε which is plotted in Fig. 3.2.

Figure 3.2: Diffusive relation between wavenumber of the fast and slow modes and the
Poisson’s ratio

By invoking the expressions for U0 and W0, we obtain the displacement fields along

the x and z directions as follow,

U0 =
(

A0k1eik1x − B0k0eik3x
)

ie−iωt,

W0 =
(

A0k0eik1x + B0k3eik3x
)

ie−iωt.
(3.26)

(3.26) consists of two traveling wave in the x-direction with two different wave numbers

k1 and k3. The solution pair for each ν reveals that k3 < k1 for normal matters with ν

between 0 and 0.5. In turn, the phase speeds c3 and c1 associated with the wavenumbers

k1 and k3 with a constant fundamental frequency would suggest that c3 > c1. The two

traveling wave inhibited in the displacement fields are termed the fast and slow modes. The

spatial separation between the two traveling wave modes can increase as the displacement

45



fields propagates further and further away from the source, creating a diffusive interference

pattern. The constructive interference only occurs when the relative phase shift between

the two waves is small. The amplitude can be greatly reduced when the relative phase shift

becomes significant.

The arbitrarily constants in (3.26) can be obtained by imposing the boundary condition

at x = 0, which yields the following,

U0 =
k1eik1x − k1eik3x

1 + βε
φ0ie−iωt;

W0 =
k0eik1x + βk3eik3x

1 + βε
φ0ie−iωt,

(3.27)

where the amplitudes of the displacement fields are functions of the wavenumbers associ-

ated with the fast and slow modes, the wavenumber ratios β and ε. The dependency of φ0

implies that both displacement fields will preserve the waveform of the imposed load at the

application interface. In the case of ultrasonic piezoelectric material, φ0 is often modeled

with a Gaussian function.

3.2.2 Subsurface Response

Subsurface propagation below the half-space is governed by (3.9) and an assumed so-

lution to the potentials is expressed as,

φR = ARei(kR,1x+kR,2z−ωt);

ψR = BRei(kR,3x+kR,4z−ωt),
(3.28)
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where the subscript R denotes the wave mode existing in the subsurface region. Following

the same analytical approach, the boundary conditions are expressed as follow,

W = φ0k0iei(k0z−ωt) for x = 0; (3.29)

U = 0 for x = 0; (3.30)

U0 =
k1eik1x − k1eik3x

1 + βε
φ0ie−iωt; (3.31)

W0 =
k0eik1x + βk3eik3x

1 + βε
φ0ie−iωt. (3.32)

By invoking the Helmholtz decomposition (3.3) at x = 0, (3.28) and (3.29) constraint the

wavenumbers in the z-direction with the following relation:

kR,2 = kR,4 = k0. (3.33)

Similarly,

ARk0 + BRkR,3 = φ0k0;

ARkR,1 = BRk0.
(3.34)

Using the previously derived Rayleigh mode as the boundary condition at the half-space,

the expressions for AR, BR, kR,1 and kR,3 can be obtained. That is,

AR = A0;

BR = B0;

kR,1 = k1;

kR,3 = k3.

(3.35)
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The solution of the displacement fields below the subsurface can be expressed as follow,

UR =
k1eik1x − k1eik3x

1 + βε
φ0iei(k0z−ωt);

WR =
k0eik1x + βk3eik3x

1 + βε
φ0iei(k0z−ωt).

(3.36)

(3.36) has important implications. The same wavenumber for both displacement potentials

suggest both U and W are propagating at the same phase speed.

When transient load is introduced, the disturbance propagates within the waveguide

with a finite speed. Below the half-space, it is translated into a phase shift θ where θ = k0z

with z ∈ (0, L] added to (3.36) in x directional propagation. That is,

UR =
k1ei(k1x+θ) − k1ei(k3x+θ)

1 + βε
φ0iei(k0z−ωt);

WR =
k0ei(k1x+θ) + βk3ei(k3x+θ)

1 + βε
φ0iei(k0z−ωt).

(3.37)

Compared to the half-space solution (3.27), the addition of phase shift of (3.37) infers a

plane wave propagation geometry in the x-direction will incur a z-directional dependency.

It renders the plane wave to have a curvature in the z-direction as it propagates along the

half-space boundary. This result suggests the waveform integrity is maintained as it travels

along the half-space with oscillations extending from the half-space boundary to the inser-

tion depth L. This finding is unlike a typical Rayleigh excitation in which the Rayleigh

mode only penetrates the medium by a few wavelengths.

3.3 Numerical Plane Geometry Model

The analytical finding in the previous section will be validated using a numerical tech-

nique employing the differential algebraic equation(DAE). This section details the load,
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material assignment and boundary conditions of the steady state problem. The spatial dif-

fusion and its dependency of the mechanical properties will be investigated. By imposing

the same computational domain described in the previous section with the imposed steady

state load. Elastic field measurement using the two-waveguide (transmission and reception)

configuration will be compared against the ideal estimation.

3.3.1 Model Environment

Using the method of line (MOL), the differential operators ∇ in the Navier’s equation

(3.9) can be discretized linearly into a set of finite difference equations. By retaining the

time-derivative expression, the resulted expression is referred to as the semi-explicit DAE

(Brenan et al., 1996). This equation decouples the temporal and spatial parameters so each

domain can be solved separately. To maintain both accuracy and numerical stability, the

generalize-α technique is determined due to its accuracy and minimal damping in the high-

frequency component (Jansen et al., 2000).

A 2D model is used to illustrate the propagation characteristics of the subsurface diffu-

sive Rayleigh mode. The numerical model is built upon the latest model developed by (Lee

et al., 2020), which utilizes the semi-explicit differential-algebraic equation technique. Fig.

3.3 depicts the modeling environment. The computational domain consists of a half-cycle

isotropic medium to mimic the physical properties of wood, which has a density of 480 kg

m−3, Young’s modulus of 1 GPa and a Poisson’s ratio ν of 0.4. A perfectly matched layer

(PML) is constructed at the outer rim of the circle to create an unbounded medium in the

radial direction by absorbing any reflections that could obscure the result.

The aluminum waveguide is inserted into the medium (ρ = 630 kg m−3, Young’s mod-

ulus = 100 GPa, ν = 0.33), the side aperture of the waveguide and the medium is bonded

to enforce the no-slip condition. The half-space is modeled as a free boundary to permit
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Figure 3.3: Simulation Geometry using COMSOL.

oscillation. To simulate a steady-state problem, a piece-wise function with a rising ampli-

tude using a Gaussian curve combined with a constant amplitude to simulate steady-state

wave propagation while maintaining smoothness at the transition. The quasi-stable load is

imposed on the back flange of the waveguide to introduce the disturbance.

y =

 e−α(t−t0)
2

sin(ωt) t ∈ [0, t0]

sin(ωt) t ∈ (t0, ∞)
(3.38)

where α is the variance, ω is the fundamental frequency of the transmitting signal, and t0

is a constant. t0 determines the temporal location of the maximal amplitude. A plot of this

piece-wise function is illustrated in Fig. 3.4

3.3.2 Diffusive Propagation

At t = 0 µs, Fig. 3.5a and Fig. 3.5b depict clear displacement fields shortly after the dis-

turbance is introduced. Due to the same phase speed at and below the half-space, both UR

and WR fields travel away from the source while maintaining the plane wave geometry. In

order to measure the diffusive effect, a displacement probe measuring the z-directional dis-

turbance is placed at the half-space at 50, 200 and 400 mm away from the source, as shown

in Fig. 3.6. The first measured disturbance is depicted in Fig. 3.7a, about 50 mm away
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Figure 3.4: A piece-wise forcing function creating quasi-stable oscillation

from the source. The waveform contains the initial transient state about 0.2 ms, the follow-

ing waveform exhibit steady-state oscillation similar to the imposed load. In Fig. 3.7b for

measurement performed at 100 mm away from the source. The results illustrate the same

transient and steady-state regions. There are some subtle differences in the transient region

where small oscillations before 0.3 ms. In the steady-state region, the amplitude appears to

be smaller and modulated with a sinusoidal function with the same fundamental frequency.

A more pronounced diffusive effect is depicted in Fig. 3.7c. Oscillation is observed around

0.4 ms. After 0.6 ms, the steady-state is achieved. The amplitude in the steady-state is

further decreased and amplitude modulation can be observed. The modulation might have

been contributed by the initial transient amplitude that was not considered in the analytical

formulation. Since this model does not model attenuation, the only contributing factor that

causes the reduction in amplitude is the difference in phase speeds between the fast and

slow modes. This result agrees with the previous analytical finding of the diffusive effect

in Chapter 3.
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a)

b)

Figure 3.5: Simulated steady-state with W mode propagation in (a) and U mode propaga-
tion in (b).

In Fig. 3.8, the U displacement field exhibits similar diffusive behavior as the steady

wave propagates away from the source. The amount of attenuation due to the interfering

diffusion is different between the W and U fields. It is the coefficients of the fast and slow

modes in the field formulation (3.27 and 3.36) that causes the different interference patterns

resulting in greater attenuation.
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50 mm200 mm400 mm

Figure 3.6: Placements of the displacement probes represented by the red dots.

3.3.3 Poisson’s Ratio Dependency

This section validates the analytical finding from varying Poisson’s ratios. Analytical

results shown in Fig 3.2 infers that an increase of the Poisson’s ratio from 0.2 to 0.4 am-

plifies the difference in wavenumbers between the two modes (fast and slow). In turn, the

resulting waveform experiences a stronger diffusive effect. In this case, the displacement

measuring probes are placed at a fixed distance of 200 mm away from the source the mea-

sure the waveform. Fig. 3.9 and Fig. 3.10 illustrate the measured U and W fields. The first

detectable peak from both cases indicates that the Poisson ratio does not have any effect

on the phase speed. The results also indicate the transition from the transient state to the

steady-state occurs at around 0.6 ms. According to the analytical result, the reduction in

amplitude is due to the difference in propagating speeds of the two different modes.

53



a)

b)

c)

Figure 3.7: W displacement fields measured at a) 50 mm, b) 100 mm and c) 200 mm from
the source.

3.3.4 Steady-State Waveguide Estimation.

In a realistic case, two identical waveguides are used to perform transmission and re-

ception. This section focuses on the displacement estimation using the two-waveguide

configuration to examine any variation between the theoretical and realistic estimation.

That is performed by comparing the signals generated using the displacement probe and

the insertable waveguide at the 50 mm from the source. The two results are depicted in

Fig. 3.12. There is a pronounced attenuation of the displacement response. This can be

explained from the governing wave equation. When an incident plane wave meets at the
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a)

b)

c)

Figure 3.8: U displacement fields measured at a) 50 mm, b) 100 mm and c) 200 mm from
the source

boundary of the two dissimilar materials, it partitions the incident wave into two wave

modes: transmission and reflection. The reflection factor R and the transmission factor W
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Figure 3.9: W displacement field at the half-space with different ν values.

Figure 3.10: U displacement field at the half-space with different ν values.
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are expressed as,

R =
W2 −W1

W1 + W2
;

W =
2W2

W1 + W2
,

(3.39)

where W is referred to as the acoustic impedance expressed as W = ρcL. Since alu-

minum has higher acoustic impedance than the simulated wooden medium, attenuation is

expected. Since acoustic impedance is only a function of the physical proprieties, its effect

is invariant in time. A close examination reveals that the steady-state estimation maintains

the frequency information compared to the ideal reference.

Transmitting WGReceiving WG

Transient LoadReception

Figure 3.11: Two waveguide configuration.

3.4 Field Approximation under the Quasi-steady Limit

The introduction of elastic energy is often a transient process. In this section, a more

realistic response of the Langevin transducer will be studied. After piezoelectric material

is excited by an injection of modulated electrical energy, narrow-band transducers tend to
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Figure 3.12: The waveguide response compared to the ideal response of the half-space
displacement.

experience a long settling time (referred to as the "ringing"). It is interesting to apply the

findings from the previous chapter to determine if a narrow band Langevin transducer is

within the quasi-steady limit. In this section, the finite-element model developed from the

previous chapter will be employed. The results will be compared to evaluate the quasi-

steady state approximation.

3.4.1 Transient Response of Langevin Transducer

Narrowband transducers generate oscillations with longer rise and fall times, which in

turn, exhibit the quasi-steady-state response. Broadband transducers produce low-intensity

short pole signals when a high spectral resolution is desired. Due to the high attenuation

acoustic properties of wood at higher frequency (Wassilieff, 1996) and strong impedance

matching, high-intensity narrowband transducers with low resonant frequency are utilized.
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A practical and elementary narrow-band transducer is the Langevin transducer. Its

design components are illustrated in Fig.3.13a. A Langevin transducer consists of back

section, piezeoelectric ceramic layers, and the output section for delivering the elastic os-

cillations. The back section plays an important role of maximizing the energy throughput

and damp out high frequency components in the output. Multiple layers of piezoelectric

plates are sandwiched together, and metal film electrodes are inserted between each layer.

The electrodes with opposing polarities produce voltage potential within each piezoelectric

ceramic layer. A pre-tensioned bolt is threaded through each layer to increase the tensile

strength to achieve a prestress in the order of 300 kg cm−2 (Gallego-Juarez, 1989). By pre-

stressing the piezoelectric ceramic, mechanical energy is stored before the excitation which

increases the amplitude of the output mechanical energy. Fig. 3.13b displays a constructed

Langivin transducer as employed in this study.

The piezoelectric ceramic material can bi-directionally convert electrical energy into

mechanical energy. Due to the complexity of the material response and its geometry re-

lation, the nonlinear estimation of the time-dependent transient response can only be esti-

mated using the classical wave equation. The geometric shape excites multiple vibration

modes that often produce non-ideal mixed resonance (Uchino, 2012). The previous attempt

at using FEM and 1D analytic result has produced useful results illustrated in Fig. 3.14.

In this case, the piezoelectric plate experimented immediately after an excitation voltage

is applied. The spectral graph Fig. 3.14b illustrates two fundamental modes occurring at

about 5 MHz and 15 MHz, suggesting the excitation response of mixed resonance. The

time-domain signal illustrates a clear oscillation with multiple frequencies with attenuating

amplitude.

Based on the mixed resonance response of a typical pizeoelectric plate, a waveguide

is designed to filter other frequency components so that only the desired resonance is pro-

duced. The waveguide design is illustrated in Fig. 3.15. It primarily consists of the front
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a)

b)

-

+

Figure 3.13: a) Design schematic of Langivin transducer. b) Exposed view of a manufac-
tured Langivin transducer. (Cochran et al., 2012).

radiation aperture (17), back flange (18), the main shank (19), and the application interface.

The radiation aperture is the portion of the waveguide that will be inserted into the wooden

medium. The back flange provides the structural support allowing ultrasonic transduc-

ers to be mounted directly to the waveguide. The indented application interface is where

Langevin transducer horn will connected to the waveguide guiding the ultrasonic wave into

the desired medium. The main shank (19) is wider than the radiation aperture to provide

the necessary structural support when the waveguide is hammered into the medium.

Steady-state modal analysis is performed to ensure the maximal displacement is achieved

at the pre-determined frequency. The displacement is measured at the front aperture.

Through steady-state spectral and geometric optimizations, different physical dimensions

were used to achieve an optimal eigenfrequency of 50 kHz while maintaining the physical
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Figure 3.14: Time transient response of a pizeoelectric plate (Cochran et al., 2012).

21

19

17

15

16

18

Figure 3.15: An illustration of the insertable waveguide.

requirement. Fig. 3.16 illustrates the spectral response of the waveguide. It shows that the

resonance frequency is at 50 kHz, and the amplitude reduces rapidly for other frequencies.

This spectral response is an ideal "bandpass filter" to reduce the effects of high frequency

components.
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Figure 3.16: Spectral Response of the waveguide

3.4.2 The Spatial and Poisson’s Ratio Dependencies

To illustrate the elastic wave propagation under the quasi-steady limit,the previously

introduced finite-elements model in Chapter 3.3 is used with the same boundary condition.

A square wave excitation response of a Langevin transducer can be simplified by a Guas-

sian modulated sinusoidal wave (San Emeterio et al., 2004) illustrated follow to model the

transient load,

σ = σ0e−α(t−tc)2
e−iωt (3.40)

where σ0 is the amplitude, ω is the resonant frequency of the oscillating piezoelectric mate-

rial, α represents the bandwidth, and tc is a constant denoting the time when the maximum

amplitude occurs. The measured displacement waveform at 50 mm, 100 mm, and 200

mm away from the source is superimposed in Fig. 3.17. The three envelops with different

arrival times. The difference in arrival times indicates the same group speed suggesting

the narrow-band propagation. As the transient waves propagate away from the source, the

waveform displays a distinct amplitude reduction. Since artificial damping was not im-

posed in the model, the reduction in amplitude suggests the difference in phase speeds
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between the fast and slow mode might have contributed. This finding is similar to the

steady-state result. One more observation confirms the diffusive propagation by analyz-

ing the wave envelops. At 200 mm, the primary wave envelop is followed by a secondary

wave envelop. This secondary wave envelop is less pronounced for 50 and 100 mm mea-

surements, suggesting the two modes are more in phase resulting in stronger amplitude

responses. In other words, the interference pattern produces a reduction of primary wave

amplitude and a more distinct secondary wave envelop. Fig. 3.18 is the results of a study

comparing the reduction of amplitudes between the steady-state and the quasi-steady state.

As the wavefront propagates further away from the source, the diffusive behavior in the

steady-state case is compared with the transient state. A similar level of amplitude atten-

uation and the close correlations in values strongly suggest the validity of employing the

quasi-steady assumption. Henceforth, the fast and slow modes produced by the steady-state

formulation can apply to the slow transient amplitude modulated ultrasonic signal using the

quasi-steady limit.

The diffusive behavior as a function of the Poisson ratio is examined in Fig.3.2. Similar

to the steady-state analysis, waveform measurements are conducted at 200 mm away from

the source. ν = 0.1 and ν = 0.4 are examined. As recall, the phase speed difference

between the fast and slow modes increases as the Poisson ratio increases. In Fig.3.2a, it is

apparent that the reduction in amplitude in the primary envelope for ν = 0.4 followed by a

more pronounced secondary envelope. Unlike the waveform with ν = 0.1, the waveform is

more in phase due to the small difference in phase speeds. Fig.3.19b shows the frequency

response suggesting no shift in the fundamental frequency. The small spectral response

suggests a greater destructive interference in the ν = 0.4 case.
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a)

b)

Figure 3.17: a) Temporal and b) spectral responses of the waveguide with ν = 0.4

3.4.3 Dual Waveguide Estimation of Transient Wave

It is critical to ensure that the dual waveguide sensing configuration does not introduce

artificial disturbance that would destroy the actual waveform characteristics. In this case,

the stress measuring probe is placed at the application interface of the receiving probe to

mimic the elastic wave seen by the transducer. A comparative study between the displace-

ment at the half-space and the stress measurement at the receiving probe is illustrated in Fig.

3.20. The time-domain responses are illustrated in Fig. 3.20a and Fig. 3.20b. Full width
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Figure 3.18: A comparison of the measured amplitudes between the steady-state and quasi-
steady excitation mode with ν = 0.4

at half maximum (FWHM) is to measure the levels of diffusivity quantitatively. As the

name implies, FWHM is defined as the width of the energy distribution at half-maximum.

The ideal measurement produces an FWHM of 120 µs while the waveguide approximation

gives FWHM of 110 µs, that gives an approximately 8% difference in the wave envelope

in the time domain. It suggests that the embedded waveguide does not distort the wave-

form measurement. In the spectral response, which is depicted in Fig. 3.20c and d, Both

response curves show the center frequency at 50 kHz with a bandwidth of approximately

10 kHz, an excellent indication in spectral estimation.

3.5 Summary and Discussion

This section has formulated the stress wave excitation using the designed embedded

waveguide and the characteristics of its propagation. Under the flat geometry and the

isotropic assumption, the resultant analytical solution gives rise to the diffusive property

as a function of the Poisson’s ratio. Below the half-space, the subsurface wave travels at
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a)

b)

Figure 3.19: A comparison of the measured waveforms between the steady-state and quasi-
steady excitation mode with ν = 0.4

the same phase speed as the surface wave allows the integrity of the wave envelops to be

maintained. This has an important implication of allowing the surface and the subsurface

modes to characterize the shell region. The steady-state results can be used to approximate

the response under the quasi-steady assumption, which is used to model the transient re-

sponse of the Langevin transducer. Wooden materials possess Poisson’s ratio between 0.3
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D)

Figure 3.20: Transient response estimation of the waveguide. Subplot a and c show the
ideal waveform in both temporal and spectral domains. Subplot b and d shows the wave-
form estimation using the proposed embedded waveguide design.

to 0.4 (Green et al., 1999). According to the finding highlighted in Fig 3.2, the diffusivity of

the elastic propagation is insensitive to the change of the Poisson’s ratio. Hence, this study

does not focus on the diffusivity property of the elastic wave to characterize the material

properties. In the next chapter, a numerical poroelastic model in the orthotropic medium

will be developed and employed to analyze the effects of the excited Rayleigh mode under

cylindrical symmetry.
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Chapter 4

Numerical Model of the Orthotropic

Porous Medium

Microscopically, wood generally consists of hollow fibers oriented in the longitudinal

or axial direction transporting water and nutrients from the roots through the sapwood to

the leaves. These fibers are called tracheids. Depending on the seasonal variation, the

cycle creates springwood and summerwood with a varying density, as seen in Fig. 2.6.

These fiber structures constitute about 90% of the wood. The remaining 10% is composed

of short, hollow, brick-shaped ray cells oriented in the radial direction transporting food

that is manufactured in the leaves down to the inner bark to support the growth of more

wood fiber (Morrell, 2012). The microscopic view gives rise to orthotropic and poroe-

lastic properties. It presents a great challenge of modelling the behaviors of any elastic

wave propagation. This chapter is devoted to the numerical approximation of the medium.

Using the proposed dual waveguide excitation and approximation technique, the resultant

waveform in the orthotopic medium with cylindrical symmetry in the time domain is first

studied. Using the Biot’s model for porous media, the resultant spectral domain analysis

will be added to the model to study its effects on Rayleigh wave propagation.
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4.1 Numerical Model of Orthotropic Medium

4.1.1 Constitutive Equation of Motion

The orthotropic medium is defined as the mechanical properties with the axial depen-

dency. By invoking the Navier equation in 3.1, the directional dependency of the physical

properties can be represented by the Christoffel acoustic tensor Ciklm. Henceforth, the

Navier equation in an unbounded orthotropic medium with a body force σij can be trans-

formed into

ρüi = Ciklmuk,l j + σij (4.1)

where üi denotes the second time derivative of the displacement field u, and it is often

decomposed into the longitudinal and transverse potential fields through the Helmholtz

decomposition. In the two-dimensional case, the stiffness matrix Ciklm describing an or-

thotropic medium in the cylindrical coordinate system is expressed as follows:

C =


c11 c12 0

c21 c22 0

0 0 c33

 (4.2)

with c11 = 1
ER

, c12 = c21 = − vTR
ET

, c22 = − 1
ET

and c33 = 1
GTL

, where ER, ET and

EL are the Young moduli in the radial (R), tangential (T) and longitudinal (L) directions,

νi,j corresponds to the Poisson’s ratios with the longitudinal deformation in the direction of

stress i and shear deformation in the j direction, and Gij are the shear moduli. Based on the

empirical results generated by the U.S. Department of Agriculture (USDA), different elastic

properties can be obtained from Taggart et al. (1999). Table 4.1 provides the numerical

values for the typical wood species deployed in the utility pole industry.
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c11 c22 c12 c21 c33
Douglas-fir 11.7 15.9 5.94 4.55 113
Red cedar 19.1 26 10.5 9.24 186
Red pine 13.1 17.9 5.5 5.36 128

White spruce 14.9 2.02 4.95 6.46 144

Table 4.1: Entries of the Christoffel acoustic tensor (Lee et al., 2020).

Under the cylindrical symmetry, the radial and tangential directions are shown in Figure

4.1. The estimated transient response of a Langivin transducer is applied on the excitation

interface according to (3.40).

q

Excitation 

Interface

r

Wooden 

Medium

Waveguide

Side 

Interface 

Boundary

Front 

Interface 

Boundary

Figure 4.1: Geometry of the problem.

In order to discretize the constitutive equation (4.1) to be suitable for numerical im-

plementation, MOL can be employed. This method allows the spatial derivatives to be

transformed into a set of finite difference equations resulting in the so-called semi-explicit

DAE. The backward differentiation formula (BDF) has known to be one of the most versa-

tile and popular numerical techniques for solving a wide range of DAE problems. Hence,

it is employed in this problem Bernan et al..

4.1.2 Forcing Boundary

Based on the quasi-steady response of a typical narrow-band transducer, the boundary

load of the elastic radiation can be modeled using the analytical form described in (3.40).

Due to the geometry the GL region, the cylindrical symmetry formulation of the transducer
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response is used. It can be described using the Gaussian model which yield the following

transient expression:

σrr|r=b = σ0e−α(t−tc)
2
ei(kL−ωt) for |φ| ≤ a, (4.3)

where k is the wave number. At the half-space of a utility pole at the ground line (GL),

the boundary condition along the circumference of the cross-section can be reasonably

assumed to have zero longitudinal and shear stresses. That is,

σrr = 0, σθr = 0 (4.4)

4.1.3 Effective Properties and Computation Upscaling

As previously mentioned, the irregular cellulose structure produces both microscopic

and macroscopic properties depending on the spatial scale. Its mechanical properties de-

pend on the morphology of the cellulose and the physical properties of the cell walls. Due

to the microscopic anisotropy, if the elements are to consider the microscopic structure, it

will present an abnormous computational challenge. Therefore, a technique called com-

putational upscaling is utilized by replicating a single cell to a multi-cell structure. The

dimensional dependency can reduce and give rise to the so-called effective properties. Fig.

4.2 shows that as the cell structure continues to replicate, the physical properties converge

to values at which we termed the effective properties. It is apparent that the notion of ef-

fective properties helps produce realistic results without incurring excessive computational

complexity. It helps establish the smallest element size. In order to resolve the waveform,

the Nyquist-Shannon theory constrains the smallest element size. Based on the constraints

of the effective properties and the constraints of the sampling theory, a study conducted by

(Lee et al., 2020) has summarized the wood species that are commonly used for poles.
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Figure 4.2: Homogeneity and convergence of physical properties from Douglas-fir (Lee
et al., 2020).

4.1.4 Time stepping and Numerical Stability

There are two main requirements in selecting the appropriate time step. The first re-

quirement is to avoid aliasing in the signal. This can be determined using the Nyquist-

Shannon sampling theorem which states that the sampling frequency needs to be at least

twice of the center frequency (Shannon, 1949). Be conservative, the time step is set to be

at least ten times greater than the fundamental frequency to avoid aliasing.

Min. Element Size [µm]
Douglas-fir 613
Red Cedar 361
Red Pine 702
White Spruce 663

Table 4.2: Maximum element size for each species in order to employ the computational
upscaling technique (Lee et al., 2020).
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Since the orthotropic wave equation contains non-linear terms, the issue of the stiffness

of the PDE requires the numerical technique to be more resilient to any numerical insta-

bility (Kassam and Trefethen, 2005). It demands the numerical method to be capable of

controlling the truncation and interpolation errors during the solution process. In this study,

different sizes of time-stepping are used to observe the local relative errors by comparing

the predicted values and approximated value at every time step. By definition, the relative

local error is defined as follows (Brenan et al., 1996),

ERR = M
∣∣∣∣∣∣∣un+1 − u0

n+1

∣∣∣∣∣∣∣ ≤ 1.0, (4.5)

where u0
n+1 contains all the predicted values based on the predictor formula Krogh (1974),

and un+1 contains the approximated values.
∣∣|·|∣∣ denotes the L2 norm. M is a coefficient

related to a chosen step size. Figure 4.3 illustrates the relative error using different step

sizes. Although small step sizes provide a better temporal resolution, it increases computa-

tional time. As illustrated in Figure 4.3, the diminishing in return helps justify an efficient

time step while maintaining small relative error.

4.1.5 Case Study: Time Domain Analysis

Under the orthotropic medium, this section briefly describes the numerical results by

analyzing the wave emission and propagation pattern. The cylindrical symmetry of or-

thotropic medium according to data compiled by the US Forest Services (Green et al.,

1999) provide the detail information about the physical properties of the medium. Due to

the wide adaptation of Douglas-firs in the utility industry, its physical properties from the

database were used for demonstrating the result. The justified transient load based on the

nonlinear response of the Langevin transducer is used, and an approximate elastic response

is depicted in Fig. 4.4.
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Figure 4.3: Relative error of different step sizes (Lee et al., 2020).

Figure 4.4: Imposed transient response to simulate a typical narrow-band ultrasonic trans-
ducer

The elastic disturbance imposed at the application interface is guided through the shank

of the waveguide and into the interior of the medium. The immediate unbounded medium

allows the wavefront to expand outward. Due to orthotropic variations in physical proper-
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ties within the medium, the propagating speed differs both tangentially and radially. Hence,

it results in a beam pattern shown in Fig. 4.5a. This similar pattern has been previously pre-

dicted by (Rose, 2004). For the purpose of comparison, a snapshot of the emission pattern

created in an isotropic medium is shown in Fig. 4.5b. It depicts a uniform and spherical

expansion of the elastic wave due to the directional dependency of the physical proper-

ties. (Lee et al., 2020) further analyzed the longitudinal and transverse wave modes and

compared with other similar model (Senalik et al., 2010) in order to validate this model.

Based on the imposed traction-free condition and the assumed longitudinal mode, the

side interface excites longitudinal stress wave oscillating in the radial direction. The prop-

agation of Rayleigh mode in the curved half-space boundary is often termed surface mode.

This mode consists of both the longitudinal φ and the transverse displacement components

ψ which can be expressed analytically as (Viktorov, 1967),

φ = Aeipθ Ip (klr) ;

ψ = Beipθ Ip (ktr) ,
(4.6)

where A and B are the amplitudes, Ip is the Bessel function of an order p, where p is the

angular wave number expressed as 2πRλ, θ is the tangential direction, kl and kt are the

wave numbers for the longitudinal and tangential wave numbers expressed as k = 2π/λ.

This mechanism is illustrated in Fig. 4.6 by observing the enhancement of the stress level

around the circumferential region at different times.

By employing the dual waveguide configuration which measures the stress received, the

wave mode excited by the front interface and the Rayleigh surface mode excited by the side

interface are captured in Fig. 4.6. Three different time frames are recorded corresponding

to different wave modes generated by the embedded waveguide. The first arrival labeled

AW1 is generated by the direct radial trajectory at t = 360 µs (Fig. 4.6a). This is a small
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Figure 4.5: Magnitude of the displacement fields at a) orthotropic medium where the dotted
white lines denote the beam width boundary and the white arrow denotes the energy vector.
b) Isotropic medium using average properties.

amplitude due to the outward expansion of the energy through a small frontal area. The

second arrival labeled AW2 arriving at t = 560 µs is produced by the similar mechanism.

The outer boundary however reflects most of the elastic energy back toward the receiving

waveguide creating a slightly larger wave amplitude (Fig. 4.6b). This mechanism is often

referred to as the Snell’s law. In the process, the so-called mode conversion converts a por-

tion of the stress energy from the longitudinal to transverse mode. This trajectory follows
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the half-space boundary in the tangential direction. As a very rough estimate, the group

TOFs of the two different arrivals have the ratio of approximately 1.55, which agrees with

the ratios of the distances of the two arrival waves. This finding suggests that the dispersive

relation between the AW1 and AW2 are the same, producing the same group velocity.

The focus is the arrival mode labeled AW3. At t = 890 µs, the signal response is the

strongest due to the larger contact interface between the medium and the waveguide (Fig.

4.6c). However, this is not always the case. When decay and high moisture content exist

in the shell region, high attenuation in the signal can result in a lower amplitude response.

This concept will be revisited in the later chapters. The AW3 is the result of symmetric

wave propagation in both clockwise and counter-clockwise direction. The arrival time is

much longer than the AW2. This is due to the significant difference of group velocities

between AW1 and AW3. Since this study focuses on narrow-band transducer, the dispersive

relations of AW1, AW2 and AW3 are not further investigated here. However, the phase

speed of AW3 can be found in Fig. 3.2.

Table 4.3 shows the estimated arrival measured based on the highest peak amplitude

value. This technique is more accurate in determining TOF when a single-frequency elas-

tic wave is introduced into the medium because any attenuation in energy will not alter the

time of the peak energy. The normalized ratio (NR) is calculated based on the following

expression NR = TOFi/TOF1, where i denotes the arrival wave number. This expression

compares the TOFs of different arrivals to the initial arrival mode. As an interesting ob-

servation, the NR of AW2 is 1.56. This is the same as the ratio of the distances of the

two arrivals. This is realized by examining the simulation result. AW1 corresponds to the

radial propagation, while AW2 is a result of mode conversion when the wavefront interacts

with the half-space boundary. This observation helps validate the model and confirm the

trajectory of AW2. The AW3 has a much greater NR value because of the curvature of the

boundary that changes the group speed of AW3 predicted by (Viktorov, 1967).
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a)

b)

c)

1 2 3Labels:

T1 = 360 us

T2 = 560 us

T3 = 890 us

Figure 4.6: Received time-domain signal with the corresponding states of wave propagation
at a) t = 360 us, b) t = 560 us and c) t = 890 us. (Lee et al., 2020)

The diffusive effect of the Rayleigh propagation can be observed by measuring the

FWHM of the waveform. To demonstrate this scenario, receiving waveguides are placed

at the 180o and 20o relative to the transmitting waveguide. The resultant waveforms are

illustrated in Fig. 4.7. Subplot a) shows the waveguide positioning at 180o , the FWHM

is measured to be approximately equal to 150 µs. Subplot b) shows the waveguide posi-
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Arrival Wave TOF Normalization Ratio
AW1 360 1
AW2 560 1.56
AW3 890 2.47

Table 4.3: The arrival time of the different wave modes

tioning at 20o , and the measured FWHM is estimated to be 80 µs. This difference in the

width of the wave envelop help further validate the finding of the diffusive effect and more

importantly, it suggests the finding from the plane geometry propagation also applies in the

convex curvature.

a)

b)

Figure 4.7: Received time-domain signal with the corresponding states of wave propagation
at a) t = 360 us, b) t = 560 us and c) t = 890 us. (Lee et al., 2020)

79



4.1.6 Case Study: Variations in Mechanical Properties

When a wood pole experiences the first stage of decay (often referred to as the incipient

decay), fungal agents produce digestive enzymes (Schmidt, 2006) by destroying normal

tissues on the wood cell walls. This process alters the original cell structures and degrades

its physical properties. A direct contribution to the reduction of its overall strength. In

the early stage, the mechanical properties decrease by 10% before any sign of mass loss

can be detected (Highley, 1999). Fig. 4.8 illustrates empirical result conducted by S.F.

Curling (Curling et al., 2002). It illustrates the extent of the decay over time and compares

the difference between mass loss and MOR, MOE and work to maximum load (WOM).

Recent studies are focusing on the specific decay mechanisms and the targeted mechanical

property degradation (Schubert et al., 2006) and (Winandy and Morrell, 1993). Employing

the findings from the prior research, the data are incorporated into the model to investigate

the impact on the waveform in the temporal domain.

Figure 4.8: An excerpt illustrating the correlations between decay on various mechanical
properties (Curling et al., 2002).

To simulate wooden pole with incipient decay, according to Fig. 4.8, both Young’s

modulus and the Shear modulus incur 20% reduction. The density remains constant in
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both cases. The time domain signal is portrayed in Fig. 4.9. The AW1 are relatively the

same in both cases. The AW2 and AW3 on the other hand, have a distinct difference in

group velocities. That is evidenced in the reduction of the elastic moduli. The shift in

group velocity signifies a slower propagation velocity. This finding can be realized by the

constitutive equations governing the Rayleigh mode. The longitudinal and transverse wave

numbers are inversely proportional to the elastic moduli. This shift can be detected by

measuring the temporal location of the peak energy. The specific analysis technique will

be further discussed in Chapter 5.

A distinct reduction in peak energy is depicted in Fig. 4.9. By measuring the FWHM,

the pole without the property degradation is 150 µs, and the pole with degradation is 160

µs. It suggests no further diffusive effect due to deterioration of its properties. This can be

explained by invoking one of the Lamé relations of homogeneous isotropic material which

states that,

ν =
E

2G
− 1 (4.7)

where E is the Young’s modulus and G is the Shear modulus. Since both elastic moduli

were reduced by 20%, the Poisson’s relation ν remains relatively constant.

4.2 The Poroelastic Formulation

In poroelastic material, the solid and fluid media interaction forms aggregated motions.

Unlike elastic properties of the solid medium, the compression of fluid is an irreversible

process. It generates heat that will quickly dissipate into the environment. Under the

poroelastic region limit in which the ultrasonic wave operates, the solid and fluid media

interact to form aggregated motions. Unlike the elastic properties of a solid medium, the

compression of fluid within the voids is an irreversible thermodynamic process. It results
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Figure 4.9: A comparative result of waveforms between healthy pole and pole with simu-
lated incipient decay.

in added damping in the wave propagation which is referred to as the viscous damping. The

early work produced by M.A. Biot (Biot, 1956) laid out the foundation which becomes the

model of poroelastic medium. According to (Biot, 1956), using Langrangian formulation,

the energy propagation in the poroelastic medium adds energy dissipation in terms of the

viscous damping. That is,

ρ11
∂2u
dt2 + ρ12

∂2U
dt2 = P∇ · (∇u) + Q∇(∇ ·U− N∇× (∇× u)

ρ12
∂2u
dt2 + ρ22

∂2U
dt2 = Q∇(∇ · u) + R∇(∇ ·U)

(4.8)

where u denotes the solid displacement field, U denotes the fluid displacement field, ρmn

is referred to as the "mass coefficients" relating the densities of solid and fluid phases. P,

Q and R are the generalized elastic constants. N is the shear modulus of the composite.

The elastic energy is often damped out due to the viscous exchange between the fluid and

structure. The consideration of the coupling is critical in determining the viscous losses.

The mass coupling parameter ρ12 describes the interactions between the solid and fluid
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media which is defined as,

ρ12 = −φρ f (α∞ − 1), (4.9)

where φ is the porosity, ρ f is the fluid density, and α∞ is the tortuosity of the pores. Prior

work developed by Johnson et al. (Johnson et al., 1987) details the effect of viscous loss by

introducing the dynamic tortuosity. It describes the extent of the fluid and solid interaction

which is termed the viscous skin depth thickness. It can be expressed mathematically as

follows,

δ = (2η/ωρ0)
1/2. (4.10)

Since the level of interaction is frequency dependent, the formulations for the high and

low scenarios are created. At high frequency, the viscous skin thickness appears to be

thin so the interaction between the two media concentrates near the interface. Conversely

for low frequency range, the energy exchange tends to penetrate further into the interface

(δ/r >> 1), resulting in more significant viscous damping. Using 50 kHz narrow band

transmission, this study concludes that a low-frequency range is suitable for the poroelastic

analysis. Henceforth, the corresponding approximated dynamic tortuosity under the low-

frequency limit according to (Biot, 1956) and (Fellah et al., 2018) is defined as,

α(ω) ≈ α0

(
1 +

ηφ

jωα0ρ f k0

)
(4.11)

where α0 is the approximated tortuosity under the low-frequency approximation introduced

by (Lafarge et al., 1997). In the next section, numerical simulation of the Biot’s model with

dynamic tortuosity will be analyzed in the frequency domain.

83



Values
Porosity 0.4
Drained Density 685.71 kg/m3

Permeability 0.1 m2

Tortuosity Factor 1.7

Table 4.4: Parameters describing the poroelastic medium

4.2.1 Case Study: Unsaturated vs. Saturated Porous Matrices

The microscopic hollow fibers called tracheids oriented lengthwise are responsible for

transporting water and nutrients in order to sustain the growth. This function remains

intact even when a tree is commissioned for service as a utility pole. Once a brand-new

pole is planted to the ground, the ground with high moisture content allows the tracheids to

continue transporting water up to a few feet above the groundline. Contrarily, the tracheids

can be unsaturated when the ground moisture level is relatively low. Since the coupled

constitutive equations (4.8) rely on the fluid properties, the medium in the tracheids can

significantly alter the propagational characteristics. The understanding of the moisture

effect on elastic wave propagation in wooden utility poles has yet to be fully understood.

Using the prior studies characterizing the porous medium by (Cown, 1975), (Comstock,

1965) and (Matyka et al., 2008) which are detailed in Table 4.4, this section analyzes the

frequency domain response of the moisture effect in a porous medium.

The result is illustrated in Fig. 4.10. The frequency axis is normalized with the resonant

at f = 0. The spectral response with respect to the saturated and the unsaturated scenarios

are plotted. In the unsaturated case, the force interaction between the media is virtually

zero, greatly depleting the damping effect. In the saturated case, the damping force be-

comes more pronounced causing greater attenuation in the signal away from the resonant

frequency. Using power regression A = A0 f n, the coefficients are depicted in Table 4.5.

It shows the exponent n of -1.069. Compared to the dynamic tortuosity, the exponent of
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Unsaturated (Air) Saturated (Water)
A0 4803.6 600.59
n -1.069 -1.061

Table 4.5: Estimated parameters of an attenuation regression model between the unsatu-
rated and moisture saturated medium

the frequency is -1. This result helps validate the numerical model. For the saturated and

unsaturated media, there is a significant difference in amplitude. The regression model

Figure 4.10: A comparison of the energy attenuation rates between the unsaturated and
moisture saturated medium

suggests that the amplitude decreases as f−1 in both cases. By examining the constant A0,

the saturated model clearly presents a greater frequency-dependent attenuation caused by

the fluid medium.

4.2.2 Case Study: Variations in Porosity

As discussed in Chapter 2.1.2, the Coriolus versicolor decay fungus can attack both

lignin and cellulose due to their high concentrations of carbohydrates in the more advanced

stages. A scanning electron microscope produced by (Blanchette et al., 2004) in Fig. 4.11
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illustrates the result of a more extensive white-rot decay. The resulting destruction of the

cellulose causes an increase in porosity. A semi-empirical attempt was made by (Shang-

guan et al., 2014) using nitrogen adsorption to quantify the increase of porosity as a result

of prolonged exposure to the decay agents. This direct degradation of biomaterial within

the wood cells destroy the transport functions of cellulose, significantly altering the desired

physical and mechanical properties of the wood.

Figure 4.11: A scanning electron micrograph of wood that has been decayed by white rot
(Blanchette et al., 2004).

This section analyzes the sensitivity of poroelastic wave to the variation in porosity.

Employing the poroelastic model described in this section, five different porosities are in-

vestigated: φ = 0.4 to 0.8. The result of the wave amplitude is plotted in the spectral domain

shown in Fig. 4.12. Using the power regression model, the exponent and the coefficient

constants are listed in Table 4.6. The result suggests a directly proportional correlation be-

tween the increase in porosity values and the spectral amplitude. While the exponent of the

frequency remains at n = −1 in all the cases, the decrease in α0 suggests greater viscous

damping or attenuation in the elastic energy propagation.
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Figure 4.12: Spectral response of the received signal under different porosity

φ 0.4 0.5 0.6 0.7 0.8
α0 3978.7 795.6 1083.2 297.1 407.5
n -1.0 -1.0 -1.1 -1.1 -1.0

R2 1.0 1.0 1.0 1.0 1.0

Table 4.6: Parameter estimation of power regression of different porosity values

4.3 Summary and Discussion

Based on a classical description of the orthotopic medium, a numerical model about

the EOM elastic wave with cylindrical symmetry is introduced. The numerical results sug-

gest the possibility of detecting Rayleigh mode in the temporal domain. The uncovered

characteristics in relation to the Poisson’s ratio discussed in Chapter 3 help explain the

orthotropic wave propagation. Based on the decay mechanisms, the effects of different

mechanical properties in the time domain were analyzed and derived important wave char-

acteristics. An investigation into the poroelastic characteristics was conducted. Employing

the Biots poroelastic formulation, the dynamic tortuosity term relates the viscous damping

to several vital characteristics describing the medium. The case studies corresponding to re-

alistic scenarios are examined. The microscopic incipient decay corresponds to an increase
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in porosity and saturation due to the surrounding environmental conditions or preservative

treatment. The numerical model in both cases suggests greater viscous damping in the fre-

quency domain representation. This chapter developed a comprehensive two-dimensional

propagational model. For GLGL region assessment, the argument of developing a three-

dimensional model could offer a numerical insight with two practical implications. Firstly,

the possibility of out-of-plane relative placement of the probes could impact the obtained

ultrasonic waveforms. However, the isotropic emission of the waveguide and the field

attempt to align both probes in the same GLGL plane minimize the impact of off-plane

elastic emission and reception. Secondly, the elastic wave can propagate or guided along

the pole due to the half-space boundaries at the tip and the butt of the structure. This is

the so-called guided wave phenomenon. This process requires exponentially stronger en-

ergy excitation and high sensitivity reception due to the strong energy attenuation of elastic

wave propagation and the leakage of elastic energy between the pole and the nearby soil.

Hence, its effect on the in-plane elastic propagation is minimal. The next chapter focuses

on the dedicated signal processing technique allowing both time and frequency domains to

be analyzed simultaneously to help infer the physical condition of the shell region at the

groundline.

88



Chapter 5

Holistic Signal Synthesis

Based on the analytical and numerical models, the simulated elastic waveform at the

receiving waveguide contains both temporal and frequency information essential to infer

critical physical conditions within the shell region. As a logical extension, time-frequency

domain analysis is deployed to expose the information hidden in the waveforms. Similar to

other research in quantitative NDE, time-frequency representation has proven to be a suc-

cessful tool to uncover critical content about the material condition (Chen and Guey, 1992)

and (Flandrin, 1988). This chapter develops an signal synthesis technique by exploiting

the TF-domain representation in order to establish an algorithmic foundation for empirical

examination in Chapter 6.

5.1 TF Domain Representation

The TF representation in acoustic problems has been used to analyze acoustic wave-

form containing scattering and wave mode interference (Choi and Williams, 1989). A

comparative study conducted by (Dragonette et al., 1996) shows the temporal and spectral

resolution and localization of the short-time Fourier transform (STFT) and wavelet trans-
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formations in solving backscattering acoustic problems. Similar to the previous studies,

this section briefly introduces the STFT and the continuous wavelet transformation. Using

the same signal generated from the model as the case studies, the performance of these two

techniques will be analyzed and compared.

5.1.1 Short-time Fourier Transform

The STFT was first proposed as a generalization of the Gabor wavelet transform (Gabor,

1946). Further developments have continued, refining the implementation. Consequently,

it has been used in many different applications(Boashash, 2015). The basic mechanism

is to begin with the construction of the time-domain window of a length m. Within each

window, the Fourier transform is performed. The window “hops over” the signal with a

size h. This process continues until all the data points have been captured in the process. A

windowing technique performed on deterministic time-invariant signal is expressed below,

xl[m] = x[m + lH]w[m] (5.1)

where m is the local time index and m ∈ 1, 2, ...M where M is the total number of signal

fragments. l is the frame index, H is the hop size, which is a time advancement in sample

as the window generates various windows. w is the window function. Typical window

functions include Hamming, Blackman and Hann. Fig. 5.1 illustrate the a series of over-

lapping windows operating on the time-series signal. After the signal is broken down into

various segments, discrete Fourier transform (DFT) is operated in every frame. That is,

X[k, l] =
1
M

K

∑
m=1

xl[m]e−j2πmk/K (5.2)
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where k ∈ 1, 2, ...K where K denotes the total number of frequency bins. A good illustration

of the algorithm is provided in Fig. 5.2. The signal is dissected into small window (win),

and the window hops according to the hop size. The process continues to yield different

window segments.

Samples

L
e
v
e
l

Figure 5.1: An overlapped Blackman window.(Zhivomirov et al., 2019)

Figure 5.2: Illustration of process work flow of the STFT. (Zhivomirov et al., 2019)

The STFT uses constant temporal and spectral resolution for the entire analysis do-

main. Fig. 5.3 portrays a simple time-frequency resolution scheme. The constant division

between the horizontal and vertical axes signifies the constant temporal and spectral res-

olution. This scheme presents an undesirable result in many applications. In addition, it
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suffers the uncertainty according to (Auger et al., 2013). As illustrated in Fig. 5.2, the seg-

mented window size can be varied, yet large window size loses the temporal resolution, but

increase the spectral resolution. In contrast, the small window size improves the temporal

resolution while decreasing the spectral resolution. In the ultrasonic application presented

in this study, narrow-band of 50 kHz with a sampling rate of around 3.3 MHz is used. Since

the 50 kHz response resides in the low end of the spectral range, and the high spectral in-

formation is not required, the STFT can produce low resolution in the low-frequency range.

Hence, a multi-resolution scheme using continuous wavelet analysis will be investigated.

Figure 5.3: An example of the STFT resolution scheme.

5.1.2 Continuous Gabor Wavelet Transformation

Unlike the STFT which has a constant temporal and spectral resolution, wavelet trans-

formation is a multiresolution transformation in the frequency domain, the increment of

frequency in the time-frequency plane depends on the chosen filter bank. By definition,
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Wavelet transformaiton is an inner product defined as (Mallat, 1999),

Wy
ψ(a, b) =

1√
cψ|a|

∞∫
−∞

y(t)ψ
(

t− b
a

)
dt, (5.3)

where a is the dilation parameter and b is the translation parameter. y(t) is the stationary

time signal. ψ is an operator function defined as the mother wavelet. The mother wavelet

takes on different forms depending upon the selection. To select a proper mother wavelet,

prior work by (Newland, 1999) indicates that signal containing dynamic frequency and

time components should use analytic wavelet function (AWT) to analyze the signal. By

definition, an analytic wavelet function must satisfy the following condition:



∞∫
−∞

ψ(x)dx = 0,

∥∥∥ψ(x)
∥∥∥

2
= 1,

ψ(x) is symmetric about x = 0.

(5.4)

Non-analytic mother wavelet often leads to interference and artifacts that can erroneously

represent the amplitude and phase. Analytic mother wavelets such as the Gabor, analytic

form of the Mexican hat, and Cauchy are considered. The most proper wavelet tends to

have a matched shape as the signal in question(Ngui et al., 2013). Among the examined

wavelets, the Gabor wavelet exhibits a temporal response similar to the transient waveform

estimation by the dual waveguide configuration. Henceforth, the Gabor wavelet will be

employed for the remainder of the analysis. Gabor wavelet is given by,

ψ(t) = eβ(t2/2)ejω0t, (5.5)
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where ω0 is defined in a particular application to ensure the admissibility condition holds

(Louis et al., 1994). The time-frequency plan is shown in Fig.5.4. In the low-frequency

region, the plan portrays an acceptable frequency resolution for better spectral analyses

and detection of the spectral response. Based on the findings from analytical and numerical

models, the Gabor CWT produces a desirable temporal and spectral representation of the

signal to detect the mechanical and the poroelastic variations in the propagating medium.

This transformation does suffer temporal resolution in that range, but it is a common draw-

back in any TF domain analysis according to the uncertainty principle(Kim and Kim, 2001).

Figure 5.4: An example of the Wavelet resolution scheme.

5.2 Model-based Signal Analysis

The studies concluded in Chapter 3 and Chapter 4 suggest that the TF domain repre-

sentation of the signal is essential to explore the physical conditions of the medium. The

diffusive property that induced by the difference in phase speed between the fast and slow

modes inhibits in the temporal domain. The TOF of the peak energy evidences severity

of the incipient decay. The moisture content and variations in porosity associated with
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the porous medium exhibit unique damping characteristics, which can be exploited in the

frequency domain. Hence, this section attempts to deploy the appropriate time-frequency

domain analysis to assess the GL condition.
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Figure 5.5: Relating physical properties to the TF domain analysis.

Using a simulated signal discussed in Chapter 4, the corresponding TF domain repre-

sentation is displayed in Fig.5.5. Two pronounced clusters of energy are detected. These

two clusters correspond to the AW2 and AW3 illustrated in Fig. 4.6 in Chapter 4. In AW3,

the peak response at 50 kHz shows the fundamental frequency of the simulated signal. Due

to the nature of the waveform responses in different domains, the frequency domain analy-

sis helps infer the conditions about poroelastic medium and the time domain helps analyze

the diffusivity and phase velocities of the medium based on the changes in the mechanical

properties.
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5.3 Case Study: Cylindrical Medium Without Attenua-

tion

The STFT and Gabor wavelet transforms are used to analyze the temporal and spectral

resolutions of the received waveforms. By neglecting the poroelastic effect, two received

stress waveforms are generated by setting the Poisson’s ratio to ν = 0.2 and ν = 0.4 (shown

in Fig. 5.6). The corresponding STFT and the Gabor Wavelet transforms are illustrated in

Fig. 5.7. The STFT displays two enhancement of energy located between 400 and 600 µs

and 700 to 1000 µs. These two clusters are AW2 and AW3 based on the previous time-

domain analysis. For the circumferential Rayleigh mode (arrival number 3) in the STFT

domain, there is a subtitle enhancement of energy (circled in white). The range of the

spectral domain remains relatively the same. in both cases. The pixelated spectral response

indicates a poor spectral. In the Gabor wavelet domain (subplot c and d), high spectral

resolution produces a slight enhancement in the AW1 region (see subplot d). It enhances

the AW2 and AW3 energy response by giving a more detailed feature in both the spectral

region and the temporal region. It produces much higher sensitive frequency response up to

100 kHz than the STFT. For the diffusivity of AW3, the temporal domain produces greater

diffusion in the ν = 0.4 case by enhancing the circled region with t ≈ 900 µs.

At f = 50 kHz, the enhanced temporal energy response at 50 kHz is shown in Fig. 5.8.

Both domains detect the difference in energy corresponding to the diffusive interference

occurring at t ≈ 0.9 ms. The temporal domain appears to be correct. The amplitude of

the energy response is different. The Gabor generates a greater difference of 0.03 in the

peak energy compared to the STFT which shows a difference of 0.02. The difference of the

diffusive effect after the peak energy is enhanced in the Gabor wavelet domain compared

to the STFT domain. This result indicates a 30% enhancement in the signal response. The

variation of Poisson’s ratio in the Gabor wavelet transform appears to be more pronounced
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Figure 5.6: Temporal response.

a)

c)

b)

d)

Figure 5.7: STFT vs. Gabor Wavelet, a) STFT with ν = 0.2, b) STFT with ν = 0.4, c) Gabor
wavelet with ν = 0.2 and d) Gabor wavelet with ν = 0.4
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than the STFT. This suggests a better sensitivity and resolution.

Figure 5.8: Time domain responses at the resonance at 50 kH using the a) Gabor CWT and
b) STFT
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5.4 Case Study: Cylindrical Medium with Viscous Damp-

ing

The dynamic tortuosity of the Biot’s formulation incurs energy attenuation by imposing

a non-zero value in the 1st order differential term. This section aims to investigate the de-

tectability and sensitivity of the attenuated energy in both the STFT and the Gabor wavelet

domains. A simplified mathematical expression is shown below,

ρ
∂2u
∂t2 + αdwρ

∂u
∂t
−∇ · σ = Fv, (5.6)

where u is the displacement field, ρ is the effective density, and Fv is the forcing term that

represents the introduced elastic disturbance. αdw is defined as the viscous damping. When

αdw = 0, it is an undamped case, and αdw > 0 represents the damped case. In this study, the

orthotropic medium is used with the 0-180 testing configuration. The results of the damped

and undamped cases are shown in Fig. 5.9. Distinct attenuation in the signal is observed in

Figure 5.9: Waveform with an imposed viscous damping
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the damped case, while the temporal locations of the envelops are comparatively the same.

They do appear to have some distinct differences in terms of the attenuation levels. At t ≈

500 µs which corresponds to the AW2, the amplitude level is reduced by 33%. Compared

to AW3 at t ≈ 800 µs, the amplitude is roughly reduced by almost 50%. Since the viscous

damping is frequency dependent, the difference in levels of attenuation suggests that the

AW2 and AW3 might have different frequency components. The scalogram of the TF-

domain representation is shown in Fig. 5.10. It is apparent that Gabor CWT produces

more refined features due to its higher temporal and spectral resolution. By exacting the

a)

c)

b)

d)

Figure 5.10: Waveform with an imposed viscous damping

temporal energy response at the resonance, the result is depicted in Fig. 5.11. The energy

peaks shown in Gabor CWT suggests a reduction of 51%, compared to the STFT of 46%.

It indicates that the Gabor CWT has a slightly more sensitive energy response. The times of

the occurrence of peak energy are relatively the same in both cases. By examining the width
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of the peaks in all arrivals, Gabor CWT has a slightly localized response compared to the

STFT, which is an important feature to prevent interference between the energy peaks that

inadvertently gives erroneous measurements of the wave characteristics. The comparative

result suggests the Gabor CWT has a slightly better performance over the STFT. The next

section employs the Gabor CWT and the analysis process presented to produce a waveform

analysis algorithm to help characterize the GL region.

a)

b)

Figure 5.11: Time domain energy response at 50 kHz, with imposed viscous damping to
simulate energy attenuation using a) STFT transformation and b) Gabor CWT transforma-
tion
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5.5 Proposed Algorithm

The proposed algorithm follows the flow in Fig. 5.12. The raw data obtained at the GL

region from the UB1000 is inserted into the algorithm. The signal-to-noise ratio (SNR) is

calculated to evaluate the signal integrity. This calculation is critical to ensure the received

signal contains a strong energy response. If the SNR is not high enough, the algorithm exits

due to possible weak reception of the ultrasonic signal. Otherwise, the CWT using the Ga-

bor mother wavelet is employed to transform the raw data into TF-domain representation.

Under this representation, the resonant frequency is determined based on the strongest en-

ergy response in the frequency domain. At the resonant frequency, a one-dimensional tem-

poral response can be extracted. The detection of the AW3 relies on the determination of

the expected arrival region (EAR). This region can be based on the past datasets of the pole

with similar dimensions and geographical locations. This range takes the dimensional, sig-

nal, the species of the wooden medium, and mechanical degradation into account to ensure

AW3 can be detected in most cases. Within each region, the peak energy search subroutine

is employed to determine the relevant peak based on a set of characteristics. Once the peak

is identified, the algorithm calculates the peak energy value, the full width half maximum

(FWHM) and time.

5.6 Summary and Discussion

Based on the implications of temporal and spectral domains in medium characterization

discussed in Chapter 3 and 4, this section details a proposed signal analysis technique ca-

pable of dissecting the signal into the time and spectral domain holistically. Previously de-

veloped transformation such as the STFT and the wavelet transformation via Gabor mother

wavelet are compared using a numerical model with and without the influence of viscous
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Figure 5.12: Flow chart of the algorithm

damping. The mother wavelet demonstrates more promising results in terms of sharper

temporal localization of the peak energy, better spectral resolution, and contrast of the en-

ergy response when damping is imposed. Henceforth, the comparative study results in the

selection of using Gabor continuous wavelet transformation as the signal analysis tech-

nique. Thus, an algorithm is developed with a flow chart detailing the implementation pro-
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cess. The proposed algorithm will be tested in the next chapter using realistic samples and

the results will be compared against the industry standard to evaluated the effectiveness.
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Chapter 6

Empirical Study of Proposed Techniques

At this point, the fundamental understanding of principles governing the embedded

waveguide excitation has been established. The numerical and theoretical findings have

explained the essential relations between waveform parameters and the physical condition

of the medium. It enables the condition assessment by dissecting different waveform char-

acteristics. Through the time-frequency (TF) domain analysis, those parameters can be ex-

tracted to evaluate the cross-sectional condition of the wooden utility pole. Among different

TF domain analysis techniques, the continuous wavelet transform using the Gabor mother

wavelet appears to fulfill the analysis requirement with more superior performance. This

chapter presents the empirical results. The ultrasonic instrument was developed through

academic and industrial partnerships. This chapter utilizes empirical results to further val-

idate the analytical and numerical findings. This chapter begins by briefly introducing the

UB1000 design, including both the electrical and mechanical components. The empirical

ultrasonic signal obtained from a sound wood pole will be examined in both the temporal

and spectral domains. Based on the derived analysis technique, the effects of saturated

and unsaturated media will be examined and compared in detail. The impact of mechan-

ical degradation on the signal will then be analyzed. From a population of fifteen poles
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with known conditions, the selected physical features will be plotted on a feature plot to

highlight the possible future work in ultrasonic assessment.

6.1 A Brief Description of the UB1000 System

Fig. 6.1 illustrates an exploded view of the UB1000 (Hall et al., 2020) which consists

of three primary subassemblies: The casing assembly (5), the electronic assembly (9) and

the transducer assembly (7). The casing assembly protects the internal devices from the

elements. The electronic assembly manages the transmitting (Tx) and receiving (Rx) of ul-

trasound through the transducer assembly. Fig. 6.2 shows a functional flow of the UB1000

circuitry. A Bluetooth module is used to establish a connection between the UB1000 probe

and a tablet running the Android operating system. When an Rx commanding signal is

issued by a user through the tablet, the received ultrasonic is filtered and amplified before

sending it to an onboard analog-to-digital converter (ADC). The digitized raw data is for-

warded to an onboard Bluetooth module to transmit the raw data to an Android OS tablet

to perform post-processing analyses. Once the Android tablet initiates transmission com-

mand, the energy initially stored in the capacitor is discharged to provide a high-voltage

DC source. Based on the concept introduced in Chapter 2.2, the energy is routed to a full-

bridge converting a DC power into an 80-volt peak-to-peak modulated square wave to drive

the ultrasonic transducer.

The physical layout of the system is illustrated in Fig. 6.3. Fig. 6.3a is a screen shot of

the UB1000 application installed on a tablet to communicate with the UB1000 units shown

in Fig. 6.3b. Fig. 6.3c shows a complete configuration of how the UB1000 is mounted to

a wooden pole using the embedded waveguide for transverse ultrasound Tx and Rx. Fig.

6.3d shows the embedded waveguide. Its detailed specification and the design process are

briefly described in section 6.1.1.
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Figure 6.1: Overall internal view of the UB1000 (Hall et al., 2020)
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Analog to Digital 
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ADC

Driving 
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Analog 
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DC Power

Commanding 
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Figure 6.2: Flow diagram of the main circuit.

6.1.1 Embedded Waveguide

The waveguide consists of the coupling flange (21), lower body (19), radiating aperture

(17), and the depth indicator (15). The depth indicator serves as a visual queue to ensure

the waveguide is inserted to a proper depth. The aperture (17) composes of the front and the

side aperture. The circular cross-section gradually tapers down to form a cone-shaped tip.

The sharp end allows the waveguide to be driven into a specimen using a conventional ham-

mer or a mallet. Once inserted, any stress wave introduced from the flange will be guided
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a)

b) c) d)

Figure 6.3: The physical layout of the entire UB1000 system

along the shank through the specimen surface. The waveguide radiates ultrasound through

the radiating aperture in the interior of the specimen. A Langevin transducer introduced

in Chapter 3.4 is used by mating with a designated surface behind the flange to introduce

the disturbance. The back flange is also a resonator, by adjusting its diameter, it generates

standing wave of different frequencies that amplify the energy traveling through the shank.

Using FEM optimization process, the waveguide resonates at 50 kHz, the same resonant

frequency of the transducer. Fig. 6.5 shows the stress distribution of the waveguide when

the external load of 50100 Hz is introduced.

6.2 Signal From a Healthy Wooden Utility Pole

A 40-inch in circumference illustrated in Fig. 6.6a is used to demonstrate the received

pulse-echo signal. The dimension of the cross-section increases the temporal separation

among the arrival wave packets to reduce the unwanted interferences. From the Fig. 6.6a,

two UB1000 probes are attached 180o apart at the GL region. The filtered ADC values are
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Figure 6.4: Waveguide (Lee and Hall, 2020).

Figure 6.5: Waveguide Spectral Response.

captured in Fig. 6.6b. Preliminary analysis indicates three wavepackets, which can be seen

at approximately 300, 500, and 700 µs. Before 300 µs, a low amplitude ambient signal

confirms the quiescent environment. A strong SNR between the ambient noise floor and
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the received signal indicates the hardware has been implemented successfully despite the

high attenuating medium, and the post-processing step can be performed.

a)

b)

AW1

AW2

AW3

0-degree probe

180-degree 

probe
Groundline 

Region

40-inch Pole

Irrelevant Pole 

Attachment

Figure 6.6: An image of the 40-inch circumference pole and the raw signal obtained by the
UB1000 system, courtesy of UAM.
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The TF Domain analysis is performed based on the Gabor wavelet analysis discussed in

Chapter 5. The Gabor domain transformation of both the numerical and empirical results

are illustrated in Fig. 6.7. In the T-F domain plot, the two energy clusters are clearly shown

corresponding to the AW2 and AW3. Detailed justification can be found in the previous

discussion. The empirical result is obtained using the UB1000 system, and we see multiple

energy enhancement at t = 300, 500, and 800 µs, which correspond to the arrival waves. To

understand the origins of those energy regions, a temporal domain at the resonant frequency

of those results are shown in Fig. 6.7 c and d. As discussed previously in Chapter 4, the

numerical model gives three different arrival wave packets with increasing peak energy.

This is normal when the ultrasonic wave is introduced into a medium of healthy wood

cells. A similar pattern of the energy peak appears in the empirical result. However, the

relative magnitude of this increase in peak energy is different. This is mainly due to the

intrinsic viscous damping caused by irreversible energy dissipation. Based on the previous

discussion, this damping factor is a function of distance. Since the AW1 travels radially,

it is the shortest distance compared to AW2 and AW3 assuming no internal scattering.

Therefore,the attenuation effect is the smallest resulting in a relatively stronger response of

AW1 as shown in (d).

Temporal analysis can be used to validate the model by examining AW1 and AW2 TOF

ratio. Based on the relative trajectory, the AW1 and AW2 should have a TOF ratio of close

to π/2. More precise measurement can be found in Table 6.1. The result of the examina-

tion of the peak energy TOF ratio of AW1 and AW2 is shown in Table 4.3. The relative

difference between the two is about 6.4%. This difference is due to a synchronization time

delay between the initialization of the signal recording and actual transmission of the ul-

trasound. In addition, the data obtained from the forestry service publication (Green et al.,

1999) is an estimate with 10% to 15% variation. This can translate to the difference in

the propagating speed. The factor of moisture content, which can affect the mechanical
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properties of the cell wall, has not been considered in this study. It is likely to contribute to

a difference in the temporal location of the energy clusters. Nevertheless, this finding gives

a qualitative comparison of the simulated and the numerical models, and the trajectories of

the arrival wave modes.

In the spectral domain, we see a frequency shift of the energy peak. The simulated re-

sult illustrates the peak energy, which occurs at approximately 50 kHz, the same frequency

response as the imposed resonance load. The empirical result shows a much higher fun-

damental frequency. Two main factors could contribute to such a frequency shift. Firstly,

each transducer is manufactured with some tolerances. The geometric and material varia-

tions can slightly alter their vibrational mode producing different resonances. Secondly, the

current model has not considered some of the hardware details, including interface coupler

and the threaded features at the transducer horn. The fine feature within the transducer may

have been intensionally modified the resonant response.

a)

b) d)

c)

Figure 6.7: The Gabor domain representation of the a) simulated signal and b) GL signal.

112



TOF Energy Peak Value TOF Ratio (with respect to AW1)
AW1 337 5.95e3 1
AW2 493 1.91e4 1.46
AW3 709 2.27e4 n/a

Table 6.1: Time of flight (TOF) and peak energy information from the empirical signal.

6.3 Effects of Saturated and Unsaturated Media

This section focuses on the empirical results in investigating the effects of moisture

within the wood fibers on the characteristics of ultrasonic propagation. As previously dis-

cussed in Chapter 4.2, high moisture content within the porous matrix without mechanical

degradation tends to greatly dissipate stress energy. In this section, we will first introduce

the procedures for preparing the specimen, and the obtained signals will be imported into

the proposed techniques to extract the critical spectral information. The findings from a

comparative study between the high and low moisture content levels will be discussed.

6.3.1 Preparation and Procedures

In order to ensure moisture content is the only variable in the experiment, we purchased

two nearly identical brand-new and untreated utility poles. The low moisture level within

the wood fiber allows the absorption of moisture from the ground to take place naturally.

This technique can empirically simulate the transport process to evaluate the effect of mois-

ture saturated wood. An illustration of the experimental setup is displayed in Fig. 6.8. Pole

A is exposed to the external humid environment of Georgia for a few months, while the

controlled specimen (Pole C) is covered using a tent with only a few feet apart from the

other specimen in order to eliminate any solid variation. The tops of both poles are covered

so that the absorption of water only occurs at the groundline. In order to eliminate hardware

variations, the same set of UB1000 probes are used throughout the entire experiment. Fig.
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6.9 depicts the actual setup of the experiment with the two poles (labeled A and B) with

two UB1000 units mounted at the GL level. The two datasets from pole A and pole C are

collected and analyzed in the next section.

Soil

Pole CPole A

Roof

Figure 6.8: Illustration of the experimental setup to examine the moisture effects on the
acoustic signal response.

6.3.2 T-F Domain Analysis

The received raw ADC values are portrayed in Fig. 6.10. Both plots show an acceptable

level SNR suitable for analysis. As noted in Chapter 5, the Gabor wavelet is chosen for the

T-F domain analysis. The results are illustrated in Fig. 6.11a and b. Due to the small

dimension of both poles, the AW1 and AW2 are merged, creating composite waveform that

is indistinguishable. Both cases depict a strong energy response at around 500 µs. With

the strong energy response at f ≈ 60 kHz, we proceed with the temporal analysis at this

frequency.

The temporal analysis at the resonant frequency of 60 kHz is illustrated in Fig. 6.12

with both cases imposed on top of each other. Unlike the 40-inch circumference pole, the

spatial dimension alters the peak energy TOF of the arrivals. Pronounced attenuation can
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a)

b)

c)

d)

waterproof canopy 

Figure 6.9: Images of the experimental setup a) front view of pole A, b) a view of the GL
level of pole A with two UB1000 probes mounted, c) front view of pole C and d) a view of
the GL level of pole C with two UB1000 probes mounted.

be observed by comparing results from the two specimens. The dryer specimen (Pole C)

shown in red exhibits a strong energy response at around 400 and 500 µs. The response is

then quickly depleted after 700 µs. The specimen with higher moisture content (Pole A)

shown in blue also exhibits two peaks. Based on the locations, the first peak (AW2) has a

drastic attenuation of 20 dB compared to the dryer specimen. We also observe a reduction

of 35% for the second peak (AW3). More importantly, the combined peak energy TOF and

energy response shown in Table 6.2 has an interesting implication. In the second peak, the

energy in Pole A is reduced by 35% while the TOF is relatively unchanged. This can be

explained by the finding concluded in Chapter 4. The mechanical property is determined by

the temporal domain analysis. Since both poles have the same TOF in AW3, it suggests that

the mechanical properties are similar. The attenuation implies a moisture content within
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the porous medium. The signal analysis concurs with the experimental setup, validating

the findings observed in the numerical and analytical models.

a)

b)

Figure 6.10: ADC filtered values.

6.4 Effects of Mechanical Degradation

The mechanical degradation resulted from an incipient decay discussed in Chapter 4

decreases the group speed of the AW3. This section employs the proposed T-F domain
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a)

b)

Figure 6.11: Wavelet domain.

Low M.C. High M.C. Comparative Result
TOF Energy Peak TOF Energy Peak Attenuation TOF Delay

AW2 387 3.9e4 342 4.4e3 89% 12%
AW3 520 3.4e4 530 2.2e4 35 % 2%

Table 6.2: The energy attenuation and the time-of-flight (TOF) between Pole A (low mois-
ture) and Pole C (high moisture).

analysis, the signal collected using the UB1000 system from a deemed healthy and shell

rot pole determined by the industrial standard process for wooden pole examination are

analyzed and compared.
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Figure 6.12: Temporal response at 60 kHz

6.4.1 NESC Standard for Shell Rot

Based on the national electric safety code (NESC), the shell rot of utility poles can be

examined using a shell rot gauge. Similar to the hardness test in metallurgy (DeGarmo

et al., 1997), a shell rot gauge targets the differences in mechanical properties between

the healthy and decaying poles. It can be measured by imposing a load through a sharp

apparatus to create a permanent deformation in the form of an indentation or penetration.

The level of indentation is an indicator of its hardness. Normally, a healthy wood pole

exhibits a higher hardness value compared to a decay pole. The gauge allows an inspector

to use a simple hammer as a load with a shell-rot gauge to evaluate its hardness. Fig. 6.13c

shows a field inspector hammering the gauge against the pole surface to determine the level

of penetration. An image of a shell rot gauge is illustrated in Fig. 6.13a from (Freeman,

2007). The level of penetration is converted into the reduced circumference expressed

simply as,

Cred = C0 − 2πrred, (6.1)
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where C0 is the original circumference, and rred is the depth of indentation obtained from

the shell-rot gauge. In practice, the inspector will perform this shell rot test at three different

points around the circumference at 120o apart to obtain an average reduced circumference

(see Fig. 6.13b). Based on the US 1730-121 directives (Morrell et al., 1996), the pass/fail

is detailed in Fig. 6.14. Based on the climatic condition which creates different loading

requirements for the wooden utility poles, the reduced circumference outlined in Fig.6.14a

is based on the different loading requirements in the U.S. map shown in Fig. 6.14.

6.4.2 Preparation and Procedures

Based on the NESC standard, a sound and a shell-decay pole are selected for this ex-

periment to validate the finding. The pole selected will have the same GL dimension of

40-inch circumference. A larger circumference pole provides a greater temporal separation

between the wavepackets, reducing the wave interference. Fig. 6.15 shows the 0-180 con-

figuration for the UB1000 probes mounted at the GL region. Shell-rot measurements were

performed at three evenly-spaced locations at the GL to calculate the reduced circumfer-

ence. Pole ID 16529 is a healthy pole without any indication of shell rot. Pole ID 16530

has an initial indication of shell rot. The result shows approximately 1/4 inch penetration

which equates to a reduced circumference of 38.7 inches. According to the NESC table in

Fig. 6.14a and the pole location shown in Fig. 6.15c, the minimum reduced circumference

is 36.3 inches. Consequently, this pole passes the test, but it requires close monitoring in

the next few years.

6.4.3 TF Domain Analysis

The raw signals obtained from the UB1000 using the 0-180 configuration are depicted

in Fig. 6.16a and b. The same probe set is used in both specimens to variation from the
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Figure 6.13: Shell Rot Demonstration.
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a)

b)

Figure 6.14: NESC standard for shell rot.

hardware. Based on the SNR of signals from both specimens, they are strong enough for

the subsequent T-F analyses.

The TF domain representation of Pole ID 16529 is illustrated in Fig. 6.17a. Four

main clusters of enhanced energy clusters are located at around 400, 500, 650, and 750

µs. It appears to have four different wave modes reaching the receiving end. However, on

121



b)a) POLE ID: 16529 POLE ID: 16530

c)

Pole Location

Figure 6.15: Two UB1000 at the GL region of the two selected poles and their geographical
locations provided by (Hall, 2016).

a closer look at the spectral domain, the first two clusters appear to have similar spectral

characteristics. This can be analyzed by examining the spectral response at fixed times.

There is a pronounced energy depletion separating the first two clusters and the last two

clusters at around t = 600 µs. A closer look reveals a very faint energy cluster at 300

µs. This result can be better illustrated by the temporal response at the resonant frequency
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Pole ID: 16529

Pole ID: 16530

Figure 6.16: Raw ADC signal generated by the UB1000.
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shown in Fig. 6.17b. In the time domain, the initial feature shows at around 290 µs which

is the first arrival (AW1) traveling radially. Using the expected TOF ratio of 1.5, the AW2

should appear at 420 µs which is at the “valley" between two neighboring energy peaks.

This is mainly due to the imperfect cylindrical symmetry of the wood and because the

positioning of the two waveguides are not 180o apart. This results in a greater temporal

separation of the same arrival mode. Thus, two separated energy peaks appear on either

side of the expected arrival time in Fig. 6.17b. This is further evident in AW3, which

is a normal encounter to see separating energy peaks in empirical data. The TOF can be

estimated by taking the average of the neighboring peaks and using the highest peak as the

energy response of respective arrival mode. The results of TOF and energy peak of Pole

16529 are shown in Table 6.3

Based on the performed hardness test using a shell-rot gauge, the inspection result of

Pole ID 16530 indicates that the shell rot of 0.2 inch is measured at three equally spaced

positions around the pole at the glsgl region. The calculated reduced circumference is 38.7

inches. With the obtained raw data shown in Fig. 6.16, a TF domain representation is illus-

trated in Fig. 6.18. The temporal location of AW1 is unclear. A close examination reveals

an interference pattern occurs at around t = 300 µs (circled in dotted red). AW1 and AW2

may be interfering with each other. Since they formed a clearly composite signal, decom-

position can be conducted to decouple the two arrival modes. Decomposition is a necessary

extension of this work to compute the proper energy response level more precisely. At the

moment, the arrival time and the amplitude of AW1 are unable to be resolved.

Another reason the AW2 region is determined to be between 310 and 520 µs is due

to the similarity of the frequency signature. When observing AW2 from Fig. 6.17, the

spectral domain suggests a similar feature of two energy clusters with a distinct separation

at a higher frequency. Due to the scope of this study, the details of the dispersive properties

of the AW2 will not be further discussed, but will be mentioned in the future work. Finally,
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AW2 AM3

AW2 AW3AW1

a)

b)

Figure 6.17: T-F domain representation of Pole ID: 16529. a) Gabor wavelet domain rep-
resentation and b) temporal response at the resonant frequency.

another spike of energy occurs at a much later time. This spike of energy is determined to

be AW3 based on the similar spectral signature of AW3 illustrated in Fig. 6.17. Fig. 6.19

depicts the similarities of AW and AW3 in the T-F domain between Pole 16529 and Pole

16530.

The results from the two specimens are summarized in Table 6.3. The AW1 was not

detected in either case due to wave interference between AW1 and AW2 in Pole 16530.

The AW2 is detected in both cases. The relative difference of TOF is about 3%. However,
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Figure 6.18: T-F domain representation of Pole ID: 16530. a) Gabor wavelet domain rep-
resentation and b) temporal response at the resonant frequency.

I.D. 16529 16530
TOF Energy Peak TOF Energy Peak

AW1 293 1980 n/a n/a
AW2 438 32030 425 13250
AW3 678 27540 752 11590

Table 6.3: Extracted TOFs and peak energy levels between an healthy pole (16529) and a
suspected shell rot pole (16530)

there is a strong attenuation in the energy peak between the poles. The strong energy

attenuation combined with similar TOF values suggests the AW2 has traveled through high

moisture content regions. Preliminary findings from Chapter 4 suggests that AW2 relates
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b)a)

d)c)

Figure 6.19: Feature comparison of the different arrival wavemode between the two cases.
a) and c) are the TF representation of pole ID 16529. b) and d) are the TF representation of
Pole ID 16530.

to the interior propagation, the strong attenuation combined with a similar TOF suggests

high moisture content in the interior region. This remark supports the notion that decay of

wood requires high moisture environment within the medium as suggested by (Green III

et al., 1995).

The detected AW3 illustrates a very different picture. Pole 16530 has a greater atten-

uation compared to Pole 16529. The TOF also exhibits a greater delay with a relative

difference of 11%. The combination of both delays in TOF and high moisture content rules

out the possibility of only high moisture content within the shell region, but there is strong

evidence that a mechanical degradation occurred in the shell region. Another indicator for

potential mechanical issue can be inferred by examining the FWHM of the energy response.
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According to the analytical result detailed in Chapter 3, the diffusive effect is related to the

change in Poisson’s ratio. By examining the width of the energy packets, the FWHM for

Pole 16529 has a value of 200 µs, and the FWHM for Pole 16530 is much greater to a

value of 300 µs. The latency of TOF, an increase of the FWHM, and the attenuation of

energy point to a conclusion of a degradation of the mechanical properties and support the

numerical and analytical findings. To better illustrate the FWHM in both cases, Fig. 6.20

superimposes the temporal energy plots of both specimens to better illustrate the difference

in FWHMs.

AW2 AM3

FWHM

FWHM

Figure 6.20: Temporal response at the resonance for pole 16530 (Marginal Pass) and 16529
(OK)

6.5 Possible Classification of the Selected Features

In order to further demonstrate the effectiveness of the proposed analysis, eighteen

fielded utility poles with the same GL dimensions are used for this experiment. The GL

conditions are assessed using the hardness test with a shell rot gauge. Each GL condition

is determined based on a field inspector and the NESC Table listed in Fig. 6.14. Using the
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extracted features of the peak energy TOF and the computed peak energy values from the

Gabor Wavelet analysis for the AW3, the results are shown in Table 6.4. Passed, marginal

passed and failed poles are designated with green, yellow and red, respectively. The corre-

sponding values are plotted on a 2D feature plot depicted in Fig. 6.18. The labeled poles

are colored in Green, yellow and red markers according to the NESC standard. The feature

plot suggests that the pass or “green” poles tend to have higher group velocity and relatively

stronger energy response. The failed or “red” and the marginally passed or “yellow” poles

tend to have lower group velocity accompanied by weaker energy response. The character-

istics of the TOF and the energy response result in a distinct division between the passed

poles, the marginal passed, and the failed poles. This distinct difference allows a linear

classifier to be developed to help distinguish the different poles. Two factors contribute to

the sparsity of the feature plot in Fig. 6.20. Firstly, based on the previous findings, me-

chanically degraded poles possess a strong energy attenuation and slow propagation speed

of the Rayleigh mode resulting in data clustering in the low energy and high arrival time

region of the feature plot. Secondly, the sample size can affect the completeness of the fea-

ture plot. A more representative data collection and greater sample size reduce the sparsity

and variation of the data clusters. If a single feature of either the peak energy TOF or the

peak energy is used, this distinction might not be discovered.

Even though the focus of this study is strictly to uncover the characteristics and fea-

sibility of the proposed physics-based signal analysis, it is a logical extension to further

investigate the future development of utilizing advanced pattern classification techniques

classify the GL condition. Chapter 7.3 will broadly discuss some potential approaches of

employing linear classifier for this study.
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Green Yellow
ID TOF Energy Peak ID TOF Energy Peak

16337 722 1.01e3 16530 805 1.16e4
16529 680 2.75e4 15307 749 1.57e3
16581 702 2.08e4 17216 849 9.87e3
16583 749 3.48e4 39066 793 2.3e3
16584 706 5.77e3 96004 748 4.24e3
16587 744 6.04e3 Red
16591 732 5.19e3 ID TOF Energy Peak

17214 718 8.29e3
15318 803 2.25e3
17400 826 1.56e4

Table 6.4: A comparative result between the hardness test and the resultant TF domain
analysis

Linear Classifier

Figure 6.21: A feature plot of the extracted features and their resulted designation from the
described expert assessment.

6.6 Summary and Discussion

This chapter focuses on the empirical validation of the physics-based extraction of the

important features that help characterize the wooden medium using the developed UB1000

system. Using the proposed analysis algorithm based on Gabor continuous wavelet trans-

formation and the expert labeling process of using the shell-rot gauge as a hardness test
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and NESC standard of reduced circumference, the extracted peak energy time and the en-

ergy levels have produced classifiable clusters in the feature plot shown in Fig. 6.21. This

finding is encouraging and suggests the possibility of employing binary classification. Fig.

6.21 also indicates a large scattering of the data cluster, which can be an indication of the

signal variation. This variation can be contributed by several factors, including hardware

and the assessment process. The consistency of the signal response is an important in-

tegral to examine the effectiveness of this technique, yet, it is not the focal point of this

study. An additional experiment about the process variation will be analyzed in Appendix

B to establish a confidence level in the GL assessment process and the UB1000 system.

Accurate classification of the shell region at the GL GL relies on improving the follow-

ing aspects. Based on the appendix, it offers a drastic improvement over the traditional

ultrasonic assessment. It still possesses some variations that might warrant a further in-

vestigation to reduce the size of data scattering. Secondly, data collection according to

geographical locations allows examining the pole population under a similar climate and

soil conditions, reducing the data variation in the feature plot. To establish a confidence

level for classification, the sample size can be determined by the estimated standard devi-

ation of the population with a predetermined confidence level. According to (Kotrlik and

Higgins, 2001), calculation such as the Cochran’s formula can be employed for sample

size determination. This consideration can result in a complete picture of the data cluster,

giving greater confidence about performance of the classification.
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Chapter 7

Conclusions and Future Work

This chapter summarizes this dissertation and includes the implications of the contri-

butions highlighted in Chapter 1. The possible future work followed from the findings will

be briefly discussed in a much broader sense.

7.1 Concluding Remarks

This study focuses primarily on the shell region assessment at the GL level (≈ 2 inches

above grade). Using the proposed embedded waveguide excitation, this study employs the

elastodynamic principles and discovers the subsurface energy propagation closely resemble

surface mode excited by contact-based excitation with enhanced energy deposition equal

to the depth of insertion using the proposed waveguide. The diffusive property of the in-

duced wave mode is found to be a function of the Poisson ratio of the medium. This finding

was validated through a developed high-fidelity numerical model imposing the orthotropic

and the poroelastic assumptions. The simulated waveguide response is studied and the ar-

rival wave 3 (AW3) governed by the Rayleigh mode propagating within the shell region is

discovered. By extracting the AW3 from the complex energy response, it allows the char-
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acterization of the shell region condition. The developed numerical model also suggests

that the incipient decay and moisture level are correlated with the TOF at the peak response

and energy levels of the received ultrasonic signal. Built upon the findings of the numer-

ical model, Sensitive features that characterize the material properties were discussed in

Chapter 4 and selected for the TF-domain analysis. In Chapter 5, the STFT and Gabor

CWT methods were compared. Based on the resulted TF-domain analysis technique and

the findings from the physics model, the FWHM, peak energy TOF, and the attenuation

information are selected to characterize the moisture content and the mechanical decay in

the medium. Extensive empirical studies with known conditions are discussed in Chapter 6

using the developed UB1000 system. The proposed physics-based analysis technique was

compared with the results from the standard invasive assessment. This finding validates the

application of the proposed assessment method for characterizing wooden pole conditions.

It establishes a scientific foundation for future studies as an extension of this work.

7.2 Contributions Summary of this work

Contribution 1: Formulation of the Embedded Waveguide Excitation

Based on embedded waveguide inserted directly into the medium as a novel ultrasonic

radiation mechanism, this methodology bypasses the surface variation allowing the ultra-

sonic wave to be introduced directly into the wooden medium. Through systematic formu-

lation and a numerical FEM model using the isotropic assumption under plane geometry,

the analytical formulation is validated qualitatively by the numerical results. They both

suggest the generation of a subsurface Rayleigh disturbance propagating along the half-

space boundary (Chapter 3), which has never been previously studied. This work further

reveals the trajectory if the disturbance following the half-space boundary, and discovers
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the relationship between the diffusive property of the propagation wave and the Poisson’s

ratio of the medium.

Contribution 2: High-Fidelity Numerical Model of the GL region

This dissertation developed a high-fidelity FEM model (Lee et al., 2020) of the cross-

sectional region of a utility pole. This model is capable of simulating poroelastic prop-

agation based on Biot’s formulation. The inclusion of the solid and fluid motions under

elastic disturbance allows the moisture saturation levels in wood and the incipient decay to

be simulated. Under the orthotropic cylindrical symmetry assumption, the model uses the

computational upscaling technique to transform a complex microscopic structure of wood

into a set of manageable finite elements by determining the effective properties. The wave

characteristics agree with the results produced previously by other theoretical and FEM

numerical models. To further enhance its fidelity, the structural interaction between the

wooden medium and the energy source of employing embedded waveguide excitation de-

scribed in Contribution 1 is also modeled. It is the first holistic and high-fidelity model that

numerically describes the poroelastic wave propagation in the orthotropic cross-sectional

region of a wooden utility pole.

Contribution 3: Discovery of the arrival wave mode

The high fidelity model forms a reliable scientific foundation to analyze the behavioral

response of the receiving waveguide in the temporal domain under the imposed bound-

ary conditions. The result suggests the resultant subsurface Rayleigh disturbance, which

is termed AW3 can be detected and identified in the waveguide response due to its slow

diffusive property as propagating along the half-space. As a result, the AW3 can be decou-

pled from the complex response obtained from the receiving waveguide. The numerical
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model provides a complete picture to extract the expected region of the AW3 response.

The extraction process is detailed in Chapter 4 and published in (Lee et al., 2020). This

dissertation contributes to the discovery of the AW3 mode using the embedded waveguide

approach that was not previously known.

Contribution 4: Signal Analysis and Characterization of the Material

By isolating the arrival mode (AW3) in the waveguide temporal response, it is found

that the incipient decay in wood impacts both the TOF at the peak energy level and the

energy attenuation of AW3, while high moisture content in the porous matrix correlates

with energy attenuation of AW3. Combining the arrival wave mode extraction detailed in

Chapter 4 and a chosen TF domain approach via the wavelet domain transformation, this

technique extracts the temporal and energy information from the signal for characterization

of the wooden medium. This method is validated through a numerical model detailed in

Chapter 4. Consequently, this work produces a wavelet-based holistic approach for full-

waveform analysis that was not previously employed for wooden shell region condition

assessment.

Contribution 5: Empirical Validation and Physics-based Feature Selec-

tion

Extensive empirical study and testing using the patented UB1000 system were per-

formed under both controlled and realistic field environments. The obtained raw signal

was fed into the proposed holistic algorithm detailed in Chapter 5. The selected features

produced from the Gabor wavelet transformation are plotted in Fig. 6.21. Using a con-

dition assessment labeling system (green, yellow, and red) performed by the field expert

assessment and in accordance with the NESC standards, a pronounced decision boundary
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is illustrated in Fig. 6.21. The attempt of using pattern classification analysis of the shell

region at the GL region has not been previously documented and published. The result has

a profound implication for future research opportunity of using pattern classification tech-

niques to characterize the shell region condition and ultimately determining the remaining

strength of a wooden pole.
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7.3 Future Work

7.3.1 Contact-based Ultrasonic Waveguide Excitation

The development of the analytical formulation of the embedded ultrasonic waveguide

excitation provides a comprehensive understanding of the radiation and propagational char-

acteristics. The diffusive property due to the difference in phase speed between the fast and

slow modes is closely related to the physical properties, which was not previously studied.

A quantitative relation between the Poisson’s ratio and the diffusive property was detailed

in Chapter 3, provides a means for the later analysis using the FWHM metrics. This study

did not link the Poisson’s ratio to other more familiar quantities such as the MOE and MOR.

However, through the use of the Lamé relations, a functional relationship can be derived,

which could link the diffusive properties to MOE and MOR.

Through both analytical and numerical methodology, the excited subsurface Rayleigh

mode is discovered and systemically validated. The radiation mechanism bypasses the sur-

face of the medium, eliminates any influence of any surface irregularity . This in turn

enhances the consistency of ultrasonic transmission and reception, which is evident in

Chapter 6. A separate experiment detailed in the Appendix B was conducted to further

evaluate the overall consistency of the proposed assessment techniques by examining the

received waveform.
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In some applications, a contact-based waveguide might be the only option. In that

case, the mechanism of the ultrasonic radiation will be different due to the alteration of the

boundary condition. This research is already underway (see Fig. 7.1) with the United State

Forrest Product Laboratory (US-FPL) in Madison Wisconsin to examine the Glulam wood

composites. Nevertheless, the proposed analysis process can be applied to the contact-

based waveguide excitation to characterize the medium.

Figure 7.1: An example application using contact-based waveguide excitation with the
UB1000 system

138



7.3.2 Narrow-band vs. broad-band analysis

This study employs a narrow-band ultrasonic transducer based on two reasons. Firstly,

the wooden medium has a strong energy dissipation and absorption properties. It requires

a high-power transducer to pump a sufficient amount of energy into the medium. Since a

narrow-band transducer focuses in a single spectral band, it is suitable in high-power appli-

cations. Secondly, narrow-band transducers have a relatively long decay rate compared to

a broad-band transducer; Hence, the quasi-steady can be reasonably assumed. That allows

the steady-state formulation detailed in Chapter 3 to be applied. Since this study focuses

on the single-band excitation, the temporal understanding of the waveform characteristics

becomes more manageable. In addition, the findings and the knowledge produced from

this work may provide insight into future studies of employing the multi-band frequency

ultrasonic excitation. The multi-band frequency excitation offers additional advantages of

analyzing the dispersive relation of the medium by measuring the group speeds of AW1,

AW2, and AW3 as functions of the different frequencies, further enhancing the capability

of GL region characterization.

7.3.3 Analytical Formulation of Transient Poroelastic Wave

This study has systematically formulated the EOM for the propagation and radiation of

the elastic stress wave using the proposed embedded waveguide technique. The resultant

closed form solutions in both surface (3.27) and subsurface (3.37) regions give an impor-

tant understanding between the wave characteristics and the mechanical properties. The

formulation is based on the assumption of isotropy. It is a logical extension and a more de-

sirable approach to derive a closed-form formulation under the porous medium to explore

other parametric relations between the wave and medium characteristics neglected in the

isotropic domain.
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The developed analytical formulation is built on the quasi-steady state assumptions.

This is a valid assumption due to the narrow spectral response of the Langevin transducer.

Due to the well-known dispersive property of wood in various conditions, wide spectral

analysis can be desirable to develop the phase velocity dispersion curves through multi-

mode analysis (Rose, 2003). The wide spectral analysis requires a amplitude modulation

with rapid temporal change, making the presented quasi-steady state assumption and the

associated formulation invalid. It is A logical extension to formulate a transient response

of the embedded waveguide excitation based on the similar approach presented to reveal

the rich information hidden in the phase velocity dispersion curve.

7.3.4 Signal Decomposition and Arrival Wave Identification

The shell region Rayleigh mode labeled AW3 was observed qualitatively based on the

developed numerical model in Chapter 4. The model was derived quantitatively by the

analytical finding from Chapter 3. This discovery and the detailed analyses yield the first

shell region characterization in non-destructive evaluation. The trajectories of AW1 and

AW2 also play important roles in the heart region characterization. In the waveform, AW1,

AW2 and AW3 are close together temporally, inevitably induce composite interference. In

larger poles, when times between arrivals are greater, the interference between waveforms

will not as pronounced. Comparing a smaller pole, AW2 and AW3 interference can be

quite dramatic. The impact of the interference in the received waveform can be alleviated

by imposing a decomposition filter as an intermediate step before extracting each arrival

wave.

This study has proposed a technique of determining the arrival wave based on the ex-

pected arrival regions in the time domain. The arrival region is selected qualitatively based

on the developed finite-element model with the porous orthotropic formulation. The spec-
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tral response of different wave modes is worth a further investigation using multi-band

ultrasonic transmission. Its result can produce spectral signatures of different arrivals, in

turn, it gives a more definitive identification of the arrival mode.

7.3.5 Ray Tracing and Tomographic Inversion

This study establishes a numerical model allowing a qualitative determination of the

shell region wave trajectory. By exploding the waveform in the TF-domain representation,

the results agree with the NESC standards to characterize the shell region property from a

population. The statistical significance between a healthy and rotted shell region establishes

a confident level of the proposed methodology. The waveform trajectories of AW1 and

AW2 enable the examinations of other regions in the cross-section. However, a quantitative

determination of the wave trajectory might be desirable. This can be accomplished by the

ray tracing technique, which has been thoroughly studied and extensively used in optics.

This technique has been explored in ultrasonic applications, which is termed the elastic

wave ray tracing. Prior studies by (Rathore et al., 2003), (Ogilvy, 1985) and (Pereyra,

2000) could establish the needed technical foundation for future work.

Another benefit of quantitative determination of wave trajectory is to improve the accu-

racy of the ultrasonic tomographic inversion. Traditional ultrasonic tomographic inversion

focuses on the initial detectable arrival combine with Radon transform to produce an image

of a cross-sectional region. This method has been used with UB1000 with some successes

(see Fig. 7.2). However, elastic waves do not always propagate at a straight line, as shown

in this study. The determination of the curved wave path can improve the inversion quality.

Furthermore, the discovery of the different arrival modes gives trajectory information con-

taining in each waveform. The advancements produced by this work can potentially relax

the requirement by minimizing the total number of sensors.
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Figure 7.2: Tomographic Inversion using the UB1000 system (Hall, 2016).

7.3.6 Nonseparable Pattern Classification

This study has systematically explored different physical principles that characterize

the wooden medium. The associated TF-domain analysis and an algorithm have been de-

veloped. This process leads to a set of selected features sensitive enough to detect the

variation of the physical properties. As a result, a mix of various conditions of fifteen util-

ity poles was used. Based on the selected features and a labeling process based on field

expert knowledge and the well-established NESC industry standards, the produced feature

plot Fig. 6.21 illustrates a clear decision boundary. However, Fig. 6.21 also illustrates

close proximity between the two categories. It is expected that the intrinsic noise from the

inspection variations and the measurement can perturb the sample set, resulting in non-

separable behavior as more samples are collected. In that case, the error rate for a linear

discriminant function can be high. Some of the approaches, including heuristic modifi-

cations to the error-correction rules (Roychowdhury et al., 1995), and perceptron learning

algorithms (Duda et al., 2012) can be used to determine the optimal linear discriminant

function.
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Appendix A

Navier’s Equation for Elastic Model

The constitutive equation is the Navier’s equations begins with the three-dimensional

Hooke’s law describing the linear elastic behaviors in solid. In the most general case for

anisotropic medium, the Hook’s law is widely referred to as the stress-strain relation ex-

pressed using the index notation in the following,

τij = Cijklekl, (A.1)

where C is called the Christoffel acoustic tensor. τ denotes the stress, and e denotes the

strain. Since i, j, k, l range from one to three, the tensor contains eighty-one different el-

ements characterizing material. For demonstrating the Navier’s equation, we impose the

isotropic assumption, which reduces the Christoffel tensor to only two scalar quantities.

Cijkl = λδijδkl + 2µδjkδjl, (A.2)

where δ represents the Kronecker delta piece-wise function. λ and µ are the Lamé con-

stants. The isotropic simplification yields the following expression for (A.1),

τij = λekkδij + 2µeij (A.3)

The constitutive equation for motion of any particle is the conservation of momentum
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equation which is expressed in the following,

d
dt

∫∫∫
V

∂ui

∂t
ρdx =

∫∫∫
V

giρdx +
∫∫

∂V
τijnjda. (A.4)

As intimidating as it seems, the expression is another version of the familiar Newton’s sec-

ond law. Here, ρ is density, g represents any external bodily force, n is the unit normal

vector ensure the effective component of the imposed stress and τ is pointing at the direc-

tion of motion. Finally, the sum of the forcing contributes to the acceleration described

by the first term. Using the divergence theorem and distribute the time derivative into the

integrant, we arrive at the so-called Cauchy’s momentum equation expressed as,

ρ
∂2ui

∂t2 = ρgi +
∂τij

∂xj
, (A.5)

where the first term again is the acceleration term, the second term describes bodily forces,

and the third term is the internal stresses within each differential element within the body.

By differentiate (A.3) with respect to xj, it yields,

∂τij

∂xj
= λδij

∂ekk
∂xj

+ 2µ
∂eij

∂xj
. (A.6)

By definition, the strain is expressed as,

eij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi
+

∂uk
∂Xi

∂uk
∂Xj

)
. (A.7)

In the elastic region when the displacement is very small, the quadratic contribution can be

neglected yielding the following expression,

eij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi

)
. (A.8)
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Combining with the derived strain equation (A.8), (A.6) becomes,

∂τij

∂xj
= λδij

∂2uk
∂xj∂xk

+ µ
∂2ui

∂xj∂xj
+ µ

∂2ui

∂xi∂xj
. (A.9)

In the first term, since the subscript k is a dummy index, (A.9) becomes,

∂τij

∂xj
= (λ + µ)

∂2ui

∂xi∂xj
+ µ

∂2ui

∂xj∂xj
. (A.10)

By substituting (A.10) into the Cauchy’s momentum equation (A.5), we arrive at the Navier’s

equation that describes the equation of motion describing motion of differential element

within a solid volume when stresses are applied to the medium.

ρ
∂2ui

∂t2 = ρgi + (λ + µ)
∂2ui

∂xi∂xj
+ µ

∂2ui

∂xj∂xj
. (A.11)
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Appendix B

GL Signal Consistency Study

This appendix is to evaluate the consistency of the resulted AW3 characteristics, includ-

ing the peak energy TOF and the energy level when the inspection process is repeated. It is

a critical consideration, yet it is not the focus of this study. Hence, the information is placed

here for the readers to examine the data reliability and the precision of characterizing the

GL condition. The experiment is conducted in accordance with the following procedures:

• Determine the GL level by measuring vertically 2 inches above grade.

• Insert four waveguides at approximately 0, 90, 180 and 270 degrees around the pole

circumference, as shown in Fig. B.1.

• Perform ten repeat measurements at 0-180 at the GL region. The repeat measure-

ments were performed by unmounting and mounting the probes without altering the

waveguide. This step is to evaluate effects of the entire process on the received raw

signal characteristics.

• Perform another ten repeated measurements at 90-270.

The reason 0-180 and 90-270 configurations are used is that in the cross-section of

the GL region of a healthy pole, the shell region material properties should be distributed

homogeneously in the tangential direction. This concept is closely related to the orthotropic

property of wood. The wave characteristics should be the same regardless of the location

of the excitation and reception. Hence, the result of the assessment should be independent
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of the absolute positions of the probes, but rather the relative positions of 180 degrees apart

should be carefully maintained.

0180

270

90

0-180

90-270

a)

b)

Figure B.1: Test Configuration from a) the top view and b) the actual setup.

Statistical analysis of the extracted times at the energy peak and the peak energy values

are depicted in box plots shown in Fig. B.2 a and b. In Fig. B.2a, the variation of 90-270

and 0-180 are different. The location of the median with respect to the standard deviation

suggests that the 90-270 follows the Gaussian distribution, while the 0-180 exhibits left-

skew distribution characteristics with a greater standard deviation and range (max. and
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min). Based on the time scale, the relative difference of the average time values of the two

configurations is only 2%. Since the latency of the TOF due to mechanical degradation is

about 11%, statistically more significant than the 2% variation.

The variation in the energy domain of the two configurations is depicted in Fig. B.2b,

the 90-270 has a smaller standard deviation, but it shows a greater span compared to the

0-180 configuration. By calculating the relative difference of the average energy response,

the result is 20%. From the field data discussed in Chapter 6, the energy attenuation of at

least 60% would be considered a potential mechanical degradation. The 20% could falsely

identify a healthy pole. As mentioned in Chapter 2, the energy analysis of the waveform

has become a challenge in many studies. One of the issues which it was not discussed is the

hardware. The driving signal and the manufacturing tolerance of the transducers have not

been thoroughly discussed due to the scope of this study. However, manufacturing process

and a better feedback control of the full-bridge driving circuit can be an important research

to further refine the UB1000 system.

By comparing the two configurations, it is apparent that the 90-270 configuration has a

smaller variance than the 0-180. This can be explained by examining the signals generated

from the two configurations. Theoretically, since the trajectory paths of AW3 of both con-

figurations traveling are the same, the received waveform should be very similar. Using the

proposed analysis technique, the resulted energy responses are shown in Fig. B.3. In the

0-180 configuration for GL dimension of 30 inches, the AW3 arrival region lies between

400 and 600 us. As expected, a peak occurs at around 500 µs. In the 90-270 configuration

in Fig. B.3b, there two peaks that lie within this region. This is quite possible that the

two wavefronts are traveling circumferentially around the pole at different times due to im-

perfect geometric circular geometry, in-homogeneous material property and the imperfect

180-degree alignment. As a result, the two peaks interfere with each other. The interfer-

ence pattern produces a smaller first peak and an enhanced second peak. In this situation,
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a)

b)

Figure B.2: Results from 10 different measurements.

the average time values of the two peaks are used to calculate the final time. However,

the actual energy response is unable to recover unless a more advanced signal processing

technique for signal decomposition is used. That is one of the primary reasons we see a

much lower energy response in the 0-180 configuration in Fig. B.2. Nevertheless, this

result establishes a certain level of confidence in the validity of the findings in this study.
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a)

b)

Figure B.3: Temporal energy response from a) 90-270 and b) 0-180
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